一份全面具體的教案,在接下來的教學(xué)工作中起著很大作用,教案是教師為了提高教學(xué)水平提早撰寫的文字材料,范文社小編今天就為您帶來了有理數(shù)的加法教案5篇,相信一定會對你有所幫助。
有理數(shù)的加法教案篇1
教學(xué)目標(biāo):
1、知識與技能: 理解有理數(shù)加法的運算律,能熟練地運用運算律簡化有理數(shù)加法的運算,能靈活運用有理數(shù)的加法解決簡單實際問題。
2、過程與方法: 經(jīng)過有理數(shù)加法運算律的探索過程,了解加法的運算律,能用運算律簡化運算。
重點、難點:
1、重點:運算律的理解及合理、靈活的運用。
2、難點:合理運用運算律。
教學(xué)過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1、敘述有理數(shù)的加法法則。
2、有理數(shù)加法與小學(xué)里學(xué)過的數(shù)的加法有什么區(qū)別和聯(lián)系?
答:進(jìn)行有理數(shù)加法運算,先要根據(jù)具體情況正確地選用法則,確定和的符號,這與小學(xué)里學(xué)過的數(shù)的加法是不同的;而計算和的絕對值,用的是小學(xué)里學(xué)過的加法或減法運算。
二、合作交流,解讀探究
1、計算下列各題,并說明是根據(jù)哪一條運算法則?
(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)
2、計算下列各題:
(1) +(-4); (2) 8+;
(3) +(-11); (4) (-7)+;
(5) +(+27); (6) (-22)+.
通過上面練習(xí),引導(dǎo)學(xué)生得出:
交換律兩個有理數(shù)相加,交換加數(shù)的位置,和不變。
用代數(shù)式表示上面一段話:
a+b=b+a
運算律式子中的字母a,b表示任意的一個有理數(shù),可以是正數(shù),也可以是負(fù)數(shù)或者零.在同一個式子中,同一個字母表示同一個數(shù)。
結(jié)合律三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.
用代數(shù)式表示上面一段話:
(a+b)+c=a+(b+c)
這里a,b,c表示任意三個有理數(shù)。
根據(jù)加法交換律和結(jié)合律可以推出:三個以上的有理數(shù)相加,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)相加。
三、應(yīng)用遷移,鞏固提高
例(p22例3) 計算:
(1) 33+(-2)+7+(-8)
(2) 4.375+(-82)+( -4.375)
引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把正數(shù)與負(fù)數(shù)分別結(jié)合在一起再相加,有相反數(shù)的先把相反數(shù)相加;能湊整的先湊整;有分母相同的,先把同分母的數(shù)相加,計算就比較簡便。
本例先由學(xué)生在筆記本上解答,然后教師根據(jù)學(xué)生解答情況指定幾名學(xué)生板演,并引導(dǎo)學(xué)生發(fā)現(xiàn),簡化加法運算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號結(jié)合或湊整數(shù)。
例2(p23例4)
教師通過啟發(fā),由學(xué)生列出算式,再讓學(xué)生思考,如何應(yīng)用運算律,使計算簡便。第一問可以讓學(xué)生自已作行程示意圖幫助理解,注意第一問和第二問的區(qū)別。
練習(xí) 課本p.23練習(xí):1、2
四、總結(jié)反思
本節(jié)課你有哪些收獲?
五、作業(yè)
1、課本p27習(xí)題1.4a組第3、4題
2、課本p28習(xí)題1.4b組第12題
有理數(shù)的加法教案篇2
今天我說課的題目是“有理數(shù)的加法(一)"。本節(jié)課選自華東師范大學(xué)出版社出版的〈義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書〉七年級(上),。這一節(jié)課是本冊書第二章第六節(jié)第一課時的內(nèi)容。下面我就從以下四個方面一一教材分析、教材處理、教學(xué)方法和教學(xué)手段、教學(xué)過程的設(shè)計向大家介紹一下我對本節(jié)課的理解與設(shè)計。
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。
1、 有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
2、 就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎(chǔ),有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點和難點。(結(jié)合微機顯示)
教學(xué)大綱是我們確定教學(xué)目標(biāo),重點和難點的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進(jìn)行準(zhǔn)確運算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
二、教材處理
本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負(fù)數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程當(dāng)中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機,讓學(xué)生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程的設(shè)計簾具體體現(xiàn)。而且在做練習(xí)的過程當(dāng)中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。
三、教學(xué)方法和數(shù)學(xué)孚段
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程中在掌握知識同時、發(fā)展智力、受到教育。
四、教學(xué)過程的設(shè)計
1, 引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問題,讓學(xué)生在充當(dāng)指揮官的同時,有一種解決問題的成就感,從而使學(xué)生積極主動的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍。
2, 探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標(biāo)軸上來回的移動,使學(xué)生在小人的移動過程當(dāng)中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補充,從而得出有理數(shù)的加法法則。
3, 鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個循序漸進(jìn)的過程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過程當(dāng)中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。
4, 歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a充。最后教師對本節(jié)的課進(jìn)行說明。
以上是我對本節(jié)課的理解和設(shè)計。希望各位老師批評指正,以達(dá)到提高個人教學(xué)能力的目的。
要的。初中階段要培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
2、 就第一章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎(chǔ),有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點和難點。
教學(xué)大綱是我們確定教學(xué)目標(biāo),重點和難點的依據(jù)。教學(xué)大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進(jìn)行準(zhǔn)確運算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的'理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。
以上是我對本節(jié)課的理解和設(shè)計。希望各位老師批評指正,以達(dá)到提高個人教學(xué)能力的目的。
有理數(shù)的加法教案篇3
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2.能根據(jù)有理數(shù)加法法則熟練地進(jìn)行有理數(shù)加法運算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;
3.三個或三個以上有理數(shù)相加時,能正確應(yīng)用加法交換律和結(jié)合律簡化運算過程;
4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
重點、難點分析
重點:是依據(jù)有理數(shù)的加法法則熟練進(jìn)行有理數(shù)的加法運算。
難點:是有理數(shù)的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學(xué)生了解法則的合理性。
(2)具體運算時,應(yīng)先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應(yīng)先判別絕對值的大小關(guān)系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
知識結(jié)構(gòu)
教法建議
1.對于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運算以及正負(fù)數(shù)、相反數(shù)、絕對值等知識。
2.有理數(shù)的加法法則是規(guī)定的',而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應(yīng)強調(diào)加法交換律a+b=b+a中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運算習(xí)慣。不要盲目動手,應(yīng)該先仔細(xì)觀察式子的特點,深刻認(rèn)識加數(shù)間的相互關(guān)系,找到合理的運算步驟,再適當(dāng)運用加法交換律和結(jié)合律可以使加法運算更為簡化。
5.可以給出一些類似兩數(shù)之和必大于任何一個加數(shù)的判斷題,以明確由于負(fù)數(shù)參與加法運算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運算中未必也成立。
6.在探討導(dǎo)出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學(xué)的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學(xué)生更好的理解有理數(shù)運算法則。
有理數(shù)的加法教案篇4
教學(xué)目的:
經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)加法運算。
教學(xué)重點:
有理數(shù)的加法法則
教學(xué)難點:
異號兩數(shù)相加的法則
教學(xué)教程:
一、復(fù)習(xí)提問:
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的哪個方向?與原來相距多少米?規(guī)定向東的方向為正方向
提問:這題有幾種情況?
小結(jié):有以下四種情況
(1)兩次都向東走,
(2)兩次都向西走
(3)先向東走,再向西走
(4)先向西走,再向東走
根據(jù)小結(jié),我們再分析每一種情況:
(1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5-3(-3)+(-5)=-8
(3)先向東走5米,再向西走3米,兩次一共向東走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向東走3米,兩次一共向東走了多少米?
-5+3(-5)+(+3)=-2
下面再看兩種特殊情況:
(5)向東走5米,再向西走5米,兩次一共向東走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向東走0米,兩次一共向東走了多少米?
-5(-5)+0=-5
小結(jié):總結(jié)前的六種情況:
同號兩數(shù)相加:(+5)+(+3)=+8
(-5)+(-3)=-8
異號兩數(shù)相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一數(shù)與零相加:(-5)+0=-5
得出結(jié)論:有理數(shù)加法法則
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加
2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得零
3、一個數(shù)與零相加,仍得這個數(shù)
例如:
(-4)+(-5)(同號兩數(shù)相加)
解:=-()(取相同的符號)
=-9(并把絕對值相加)
(-2)+(+6)(絕對值不等的異號兩數(shù)相加)
解:=+()(取絕對值較大的符號)
=+4(用較大的絕對值減去較小的絕對值)
練習(xí):
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
計算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習(xí):
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
練習(xí)三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“”號填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a
(3)如果a>0,b|b|,那么a+b0;
(4)如果a0,|a|>|b|,那么a+b0
小結(jié):
1、掌握有理數(shù)的加法法則,正確地進(jìn)
行加法運算。
2、兩個有理數(shù)相加,首先判斷加法類
型,再確定和的符號,最后確定和的絕對值。
作業(yè):課本第38頁2、3
第40頁1、2
有理數(shù)的加法教案篇5
一.教學(xué)目標(biāo)
1.知識與技能
(1)通過足球賽中的凈勝球數(shù),使學(xué)生掌握有理數(shù)加法法則,并能運用法則進(jìn)行計算;
(2)在有理數(shù)加法法則的教學(xué)過程中,注意培養(yǎng)學(xué)生的運算能力.
2.過程與方法
通過觀察,比較,歸納等得出有理數(shù)加法法則。能運用有理數(shù)加法法則解決實際問題。
3.情感態(tài)度與價值觀
認(rèn)識到通過師生合作交流,學(xué)生主動叁與探索獲得數(shù)學(xué)知識,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
二、教學(xué)重難點及關(guān)鍵:
重點:會用有理數(shù)加法法則進(jìn)行運算.
難點:異號兩數(shù)相加的法則.
關(guān)鍵:通過實例引入,循序漸進(jìn),加強法則的應(yīng)用.
三、教學(xué)方法
發(fā)現(xiàn)法、歸納法、與師生轟動緊密結(jié)合.
四、教材分析
“有理數(shù)的加法”是人教版七年級數(shù)學(xué)上冊第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個課時,本課時是本節(jié)內(nèi)容的第一課時,本課設(shè)計主要是通過球賽中凈勝球數(shù)的實例來明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學(xué)習(xí)“有理數(shù)的減法”做鋪墊。
五、教學(xué)過程
(一)問題與情境
我們已經(jīng)熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊進(jìn)4個球,失2個球;藍(lán)隊進(jìn)1個球,失1個球。于是紅隊的凈勝球為4+(-2),黃隊的凈勝球為1+(-1),這里用到正數(shù)與負(fù)數(shù)的加法。
(二)師生共同探究有理數(shù)加法法則
前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識,從今天起開始學(xué)習(xí)有理數(shù)的運算.這節(jié)課我們來研究兩個有理數(shù)的加法.兩個有理數(shù)相加,有多少種不同的情形?為此,我們來看一個大家熟悉的實際問題:
足球比賽中贏球個數(shù)與輸球個數(shù)是相反意義的量.若我們規(guī)定贏球為“正”,輸球為“負(fù)”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學(xué)校足球隊在一場比賽中的勝負(fù)可能有以下各種不同的情形:
(1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球.也就是
(+3)+(+1)=+4.
(2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是
(-2)+(-1)=-3.
現(xiàn)在,請同學(xué)們說出其他可能的情形.
答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是
(+3)+(-2)=+1;
上半場輸了3球,下半場贏了2球,全場輸了1球,也就是
(-3)+(+2)=-1;
上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是
(+3)+0=+3;
上半場輸了2球,下半場兩隊都沒有進(jìn)球,全場仍輸2球,也就是
(-2)+0=-2;
上半場打平,下半場也打平,全場仍是平局,也就是
0+0=0.
上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學(xué)們仔細(xì)觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結(jié)果的符號怎么定?絕對值怎么算?
這里,先讓學(xué)生思考,師生交流,再由學(xué)生自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;
3.一個數(shù)同0相加,仍得這個數(shù).
(三)應(yīng)用舉例 變式練習(xí)&&</p>
例1 口答下列算式的結(jié)果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
學(xué)生逐題口答后,師生共同得出:進(jìn)行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進(jìn)行計算時,通常應(yīng)該先確定“和”的符號,再計算“和”的絕對值.
例2(教科書的例1)
解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第1條計算)
=-(3+9) (和取負(fù)號,把絕對值相加)
=-12.
(2)(-4.7)+3.9 (兩個加數(shù)異號,用加法法則的第2條計算)
=-(4.7-3.9) (和取負(fù)號,把大的絕對值減去小的絕對值)
=-0.8
例3(教科書的例2)教師在算出紅隊的凈勝球數(shù)后,學(xué)生自己算黃隊和藍(lán)隊的凈勝球數(shù)
下面請同學(xué)們計算下列各題以及教科書第23頁練習(xí)第1與第2題
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
學(xué)生書面練習(xí),四位學(xué)生板演,教師巡視指導(dǎo),學(xué)生交流,師生評價。
(四)小結(jié)
1.本節(jié)課你學(xué)到了什么?
2.本節(jié)課你有什么感受?(由學(xué)生自己小結(jié))
(五)作業(yè)設(shè)計
1.計算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.
2.計算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.
3.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
(六)板書設(shè)計
1.3.1有理數(shù)加法
一、加法法則二、例1例2例3