冪函數(shù)的概念教案5篇

時間:2023-10-13 作者:lcbkmm 備課教案

我們需要制定一份詳細的教案,以確保教學計劃的順利執(zhí)行,我們需要培養(yǎng)教師編寫高質(zhì)量教案的能力,以下是范文社小編精心為您推薦的冪函數(shù)的概念教案5篇,供大家參考。

冪函數(shù)的概念教案5篇

冪函數(shù)的概念教案篇1

(1)——定義、圖象、性質(zhì)目標:

1.了解對數(shù)函數(shù)的定義、圖象及其性質(zhì)以及它與指數(shù)函數(shù)間的關系,會求對數(shù)函數(shù)的定義域。

2.培養(yǎng)培養(yǎng)觀察分析、抽象概括能力、歸納總結能力、邏輯推理能力、化歸轉(zhuǎn)化能力;

3.培養(yǎng)堅忍不拔的意志,培養(yǎng)發(fā)現(xiàn)問題和提出問題的意識、善于獨立思考的習慣,體會事物之間普遍聯(lián)系的辯證觀點。

重點:對數(shù)函數(shù)的定義、圖象、性質(zhì)

難點:對數(shù)函數(shù)與指數(shù)函數(shù)間的關系

過程:

一、復習引入:實例引入:回憶學習指數(shù)函數(shù)時用的實例我們研究指數(shù)函數(shù)時,曾經(jīng)討論過細胞分裂問題,某種細胞分裂時,得到的細胞的個數(shù) 是分裂次數(shù) 的函數(shù),這個函數(shù)可以用指數(shù)函數(shù) = 表示。現(xiàn)在,我們來研究相反的。問題,如果要求這種細胞經(jīng)過多少次分裂,大約可以得到1萬個,10萬個……細胞,那么,分裂次數(shù) 就是要得到的細胞個數(shù) 的函數(shù)。根據(jù)對數(shù)的定義,這個函數(shù)可以寫成對數(shù)的形式就是 如果用 表示自變量, 表示函數(shù),這個函數(shù)就是 由反函數(shù)概念可知, 與指數(shù)函數(shù) 互為反函數(shù)這一節(jié),我們來研究指數(shù)函數(shù)的反函數(shù)對數(shù)函數(shù)

二、新課

1.對數(shù)函數(shù)的定義:函數(shù) 叫做對數(shù)函數(shù);它是指數(shù)函數(shù) 的反函數(shù)。對數(shù)函數(shù) 的定義域為 ,值域為 。

2.對數(shù)函數(shù)的圖象由于對數(shù)函數(shù) 與指數(shù)函數(shù) 互為反函數(shù),所以 的圖象與 的圖象關于直線 對稱。因此,我們只要畫出和 的圖象關于 對稱的曲線,就可以得到 的圖象,然后根據(jù)圖象特征得出對數(shù)函數(shù)的性質(zhì)。

活動設計:由學生任意取底數(shù)作圖,觀察分析討論,教師引導、整理 3.對數(shù)函數(shù)的性質(zhì)由對數(shù)函數(shù)的圖象,觀察得出對數(shù)函數(shù)的性質(zhì)。見p87 表 圖象性質(zhì)定義域:(0,+∞)值域:r過點(1,0),即當 時, 時 時 時 時 在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)活動設計:學生觀察、分析討論,教師引導、整理4.應用例1.(課本第94頁)求下列函數(shù)的定義域:(1) ; (2) ; (3) 分析:此題主要利用對數(shù)函數(shù) 的定義域(0,+∞)求解。解:(1)由 >0得 ,∴函數(shù) 的定義域是 ;(2)由 得 ,∴函數(shù) 的定義域是 (3)由9- 得-3 ,∴函數(shù) 的定義域是 注:此題只是對數(shù)函數(shù)性質(zhì)的簡單應用,應強調(diào)學生注意書寫格式。例2.求下列函數(shù)的反函數(shù)① ② 解:① ∴ ② ∴

三、小結:對數(shù)函數(shù)定義、圖象、性質(zhì)四、作業(yè): 課本第95頁 練習 1,2 習題2.8 1,2

讀書破萬卷下筆如有神,以上就是差異網(wǎng)為大家整理的10篇《函數(shù)概念教案》,希望對您的寫作有所幫助,更多范文樣本、模板格式盡在差異網(wǎng)。

冪函數(shù)的概念教案篇2

教學目標:

1.進一步理解指數(shù)函數(shù)的性質(zhì);

2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;

教學重點:

指數(shù)函數(shù)的性質(zhì)的應用;

教學難點:

指數(shù)函數(shù)圖象的平移變換.

教學過程:

一、情境創(chuàng)設

1.復習指數(shù)函數(shù)的概念、圖象和性質(zhì)

練習:函數(shù)=ax(a>0且a≠1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為 .若a>1,則當x>0時, 1;而當x<0時, 1.若0<a<1,則當x>0時, 1;而當x<0時, 1.

2.情境問題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對任意的a>0且a≠1,函數(shù)=ax的圖象恒過(0,1),那么對任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過哪一個定點呢?

二、數(shù)學應用與建構

例1 解不等式:

(1) ;(2) ;

(3) ;(4) .

小結:解關于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關鍵是底數(shù)所在的范圍.

例2 說明下列函數(shù)的圖象與指數(shù)函數(shù)=2x的圖象的關系,并畫出它們的示意圖:

(1) ; (2) ;(3) ;(4) .

小結:指數(shù)函數(shù)的平移規(guī)律:=f(x)左右平移 =f(x+)(當>0時,向左平移,反之向右平移),上下平移 =f(x)+h(當h>0時,向上平移,反之向下平移).

練習:

(1)將函數(shù)f (x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù) 的圖象.

(2)將函數(shù)f (x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù) 的圖象.

(3)將函數(shù) 圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是 .

(4)對任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過的定點的坐標是 .函數(shù)=a2x-1的圖象恒過的定點的坐標是 .

小結:指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結合,就可以構造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.

(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=2x和=2|x2|的圖象?

(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=|2x-1|的圖象?

小結:函數(shù)圖象的對稱變換規(guī)律.

例3 已知函數(shù)=f(x)是定義在r上的奇函數(shù),且x<0時,f(x)=1-2x,試畫出此函數(shù)的圖象.

例4 求函數(shù) 的最小值以及取得最小值時的x值.

小結:復合函數(shù)常常需要換元來求解其最值.

練習:

(1)函數(shù)=ax在[0,1]上的最大值與最小值的和為3,則a等于 ;

(2)函數(shù)=2x的值域為 ;

(3)設a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值為14,求a的值;

(4)當x>0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.

三、小結

1.指數(shù)函數(shù)的性質(zhì)及應用;

2.指數(shù)型函數(shù)的定點問題;

3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.

四、作業(yè):

課本p71-11,12,15題.

五、課后探究

(1)函數(shù)f(x)的定義域為(0,1),則函數(shù) 的定義域為 .

(2)對于任意的x1,x2r ,若函數(shù)f(x)=2x ,試比較 的大?。?/p>

教學目標:

1.通過現(xiàn)實生活中豐富的實例,讓學生了解函數(shù)概念產(chǎn)生的背景,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對應;

2.了解構成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會求一些簡單函數(shù)的定義域和值域;

3.通過教學,逐步培養(yǎng)學生由具體逐步過渡到符號化,代數(shù)式化,并能對以往學習過的知識進行理性化思考,對事物間的聯(lián)系的一種數(shù)學化的思考.

教學重點:

兩集合間用對應來描述函數(shù)的概念;求基本函數(shù)的定義域和值域.

教學過程:

一、問題情境

1.情境.

正方形的邊長為a,則正方形的周長為,面積為.

2.問題.

在初中,我們曾認識利用函數(shù)來描述兩個變量之間的關系,如何定義函數(shù)?常見的函數(shù)模型有哪些?

二、學生活動

1.復述初中所學函數(shù)的概念;

2.閱讀課本23頁的問題(1)、(2)、(3),并分別說出對其理解;

3.舉出生活中的實例,進一步說明函數(shù)的對應本質(zhì).

三、數(shù)學建構

1.用集合的語言分別闡述23頁的問題(1)、(2)、(3);

問題1某城市在某一天24小時內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問題:

(1)這一變化過程中,有哪幾個變量?

(2)這幾個變量的范圍分別是多少?

問題2略.

問題3略(詳見23頁).

2.函數(shù):一般地,設a、b是兩個非空的數(shù)集,如果按某種對應法則f,對于集合a中的每一個元素x,在集合b中都有惟一的元素和它對應,這樣的對應叫做從a到b的一個函數(shù),通常記為=f(x),x∈a.其中,所有輸入值x組成的集合a叫做函數(shù)=f(x)的定義域.

(1)函數(shù)作為一種數(shù)學模型,主要用于刻畫兩個變量之間的關系;

(2)函數(shù)的本質(zhì)是一種對應;

(3)對應法則f可以是一個數(shù)學表達式,也可是一個圖形或是一個表格

(4)對應是建立在a、b兩個非空的數(shù)集之間.可以是有限集,當然也就可以是單元集,如f(x)=2x,(x=0).

3.函數(shù)=f(x)的定義域:

(1)每一個函數(shù)都有它的定義域,定義域是函數(shù)的生命線;

(2)給定函數(shù)時要指明函數(shù)的定義域,對于用解析式表示的集合,如果沒

有指明定義域,那么就認為定義域為一切實數(shù).

四、數(shù)學運用

例1.判斷下列對應是否為集合a到b的函數(shù):

(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;

(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;

(3)a={1,2,3,4,5},b=n,f:x→2x.

練習:判斷下列對應是否為函數(shù):

(1)x→2x,x≠0,x∈r;

(2)x→,這里2=x,x∈n,∈r。

例2求下列函數(shù)的定義域:

(1)f(x)=x—1;(2)g(x)=x+1+1x。

例3下列各組函數(shù)中,是否表示同一函數(shù)?為什么?

a.=x與=(x)2;

b.=x2與=3x3;

c.=2x-1(x∈r)與=2t-1(t∈r);

d.=x+2x-2與=x2-4

練習:課本26頁練習1~4,6.

五、回顧小結

1.生活中兩個相關變量的刻畫→函數(shù)→對應(a→b)

2.函數(shù)的對應本質(zhì);

3.函數(shù)的對應法則和定義域.

冪函數(shù)的概念教案篇3

教學目標:

1、進一步理解的概念,能從簡單的實際事例中,抽象出關系,列出解析式;

2、使學生分清常量與變量,并能確定自變量的取值范圍.

3、會求值,并體會自變量與值間的對應關系.

4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.

5、通過的教學使學生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.

教學重點:了解的意義,會求自變量的取值范圍及求值.

教學難點:概念的抽象性.

教學過程:

(一)引入新課:

上一節(jié)課我們講了的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的.

生活中有很多實例反映了關系,你能舉出一個,并指出式中的自變量與嗎?

1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數(shù)n(個)的關系.

2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數(shù)n(個)與單價(a)元的關系.

解:1、y=30n

y是,n是自變量

2、 ,n是,a是自變量.

(二)講授新課

剛才所舉例子中的,都是利用數(shù)學式子即解析式表示的.這種用數(shù)學式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數(shù)n必須是正整數(shù).

例1、求下列中自變量x的取值范圍.

(1) (2)

(3) (4)

(5) (6)

分析:在(1)、(2)中,x取任意實數(shù), 與 都有意義.

(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .

同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .

第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零. 的被開方數(shù)是 .

同理,第(6)小題 也是二次根式, 是被開方數(shù),

.

解:(1)全體實數(shù)

(2)全體實數(shù)

(3)

(4) 且

(5)

(6)

小結:從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應使分母不為零;的解析式是二次根式時,自變量的取值應使被開方數(shù)大于、等于零.

注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.

但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里 與 是并且的關系.即2與-1這兩個值x都不能取.

冪函數(shù)的概念教案篇4

一、教材分析及處理

函數(shù)是高中數(shù)學的重要內(nèi)容之一,函數(shù)的基礎知識在數(shù)學和其他許多學科中有著廣泛的應用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學習數(shù)學的重要基礎知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領域,《函數(shù)》教學設計。

對函數(shù)概念本質(zhì)的理解,首先應通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數(shù)概念.其次在后續(xù)的學習中通過基本初等函數(shù),引導學生以具體函數(shù)為依托、反復地、螺旋式上升地理解函數(shù)的本質(zhì)。

教學重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。

學生現(xiàn)狀

學生在第一章的時候已經(jīng)學習了集合的概念,同時在初中時已學過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。

二、教學三維目標分析

1、知識與技能(重點和難點)

(1)、通過實例讓學生能夠進一步體會到函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。不但讓學生能完成本節(jié)知識的學習,還能較好的復習前面內(nèi)容,前后銜接。

(2)、了解構成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。

(3)、掌握定義域的表示法,如區(qū)間形式等。

(4)、了解映射的概念。

2、過程與方法

函數(shù)的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:

(1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學生在教學中的主體地位,培養(yǎng)學生的創(chuàng)新意識。

(2)、面向全體學生,根據(jù)課本大綱要求授課。

(3)、加強學法指導,既要讓學生學會本節(jié)知識點,也要讓學生會自我主動學習。

3、情感態(tài)度與價值觀

(1)、通過多媒體給出實例,學生小組討論,給出自己的結論和觀點,加上老師的輔助講解,培養(yǎng)學生的實踐能力和和大膽創(chuàng)新意識,教案《《函數(shù)》教學設計》。

(2)、讓學生自己討論給出結論,培養(yǎng)學生的自我動手能力和小組團結能力。

三、教學器材

多媒體ppt課件

四、教學過程

教學內(nèi)容教師活動學生活動設計意圖

?函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應用的廣泛,將同學們的視線引入函數(shù)的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內(nèi)容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數(shù)的世界,體現(xiàn)了新課標的理念:從知識走向生活

知識回顧:初中所學習的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎上引導學生向更深的內(nèi)容探索、求知。即復習了所學內(nèi)容又做了即將所學內(nèi)容的鋪墊

思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認識函數(shù)結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應用到本節(jié)知識,前后聯(lián)系、銜接

新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題

對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結更好的掌握函數(shù)概念,通過問題來更好的掌握知識

函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎上引入另一種方法

注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內(nèi)容和知識點

習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯(lián)系

映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內(nèi)容做更好的鋪墊

小結(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結,使學生更明白知識點

五、教學評價

為了使學生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應,與初中時學習函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學內(nèi)部研究函數(shù)打下了基礎。

在培養(yǎng)學生的能力上,本課也進行了整體設計,通過探究、思考,培養(yǎng)了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學生的創(chuàng)新意識與探究能力。

雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學理念。

冪函數(shù)的概念教案篇5

教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依賴關系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.

教學目的:

(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;

(2)了解構成函數(shù)的要素;

(3)會求一些簡單函數(shù)的定義域和值域;

(4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;

教學重點:理解函數(shù)的模型化思想,用合與對應的語言來刻畫函數(shù);

教學難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

教學過程:

一、引入課題

1.復習初中所學函數(shù)的概念,強調(diào)函數(shù)的模型化思想;

2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:

(1)炮彈的射高與時間的變化關系問題;

(2)南極臭氧空洞面積與時間的變化關系問題;

(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關系問題

備用實例:

我國xxxx年4月份非典疫情統(tǒng)計:

日期222324252627282930

新增確診病例數(shù)1061058910311312698152101

3.引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

4.根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關系是否是函數(shù)關系.

二、新課教學

(一)函數(shù)的有關概念

1.函數(shù)的概念:

設a、b是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合a中的任意一個數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:a→b為從集合a到集合b的一個函數(shù)(function).

記作:y=f(x),x∈a.

其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈a}叫做函數(shù)的值域(range).

注意:

○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.

2.構成函數(shù)的三要素:

定義域、對應關系和值域

3.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

(2)無窮區(qū)間;

(3)區(qū)間的數(shù)軸表示.

4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論

(由學生完成,師生共同分析講評)

(二)典型例題

1.求函數(shù)定義域

課本p20例1

解:(略)

說明:

○1函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;

○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;

○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

鞏固練習:課本p22第1題

2.判斷兩個函數(shù)是否為同一函數(shù)

課本p21例2

解:(略)

說明:

○1構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

○2兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。

鞏固練習:

○1課本p22第2題

○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=

(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=

(三)課堂練習

求下列函數(shù)的定義域

(1)

(2)

(3)

(4)

(5)

(6)

三、歸納小結,強化思想

從具體實例引入了函數(shù)的的概念,用集合與對應的語言描述了函數(shù)的定義及其相關概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。

四、作業(yè)布置

課本p28習題1.2(a組)第1—7題(b組)第1題