我們需要制定一份詳細(xì)的教案,以確保教學(xué)計(jì)劃的順利執(zhí)行,我們需要培養(yǎng)教師編寫高質(zhì)量教案的能力,以下是范文社小編精心為您推薦的冪函數(shù)的概念教案5篇,供大家參考。
冪函數(shù)的概念教案篇1
(1)——定義、圖象、性質(zhì)目標(biāo):
1.了解對(duì)數(shù)函數(shù)的定義、圖象及其性質(zhì)以及它與指數(shù)函數(shù)間的關(guān)系,會(huì)求對(duì)數(shù)函數(shù)的定義域。
2.培養(yǎng)培養(yǎng)觀察分析、抽象概括能力、歸納總結(jié)能力、邏輯推理能力、化歸轉(zhuǎn)化能力;
3.培養(yǎng)堅(jiān)忍不拔的意志,培養(yǎng)發(fā)現(xiàn)問題和提出問題的意識(shí)、善于獨(dú)立思考的習(xí)慣,體會(huì)事物之間普遍聯(lián)系的辯證觀點(diǎn)。
重點(diǎn):對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)
難點(diǎn):對(duì)數(shù)函數(shù)與指數(shù)函數(shù)間的關(guān)系
過程:
一、復(fù)習(xí)引入:實(shí)例引入:回憶學(xué)習(xí)指數(shù)函數(shù)時(shí)用的實(shí)例我們研究指數(shù)函數(shù)時(shí),曾經(jīng)討論過細(xì)胞分裂問題,某種細(xì)胞分裂時(shí),得到的細(xì)胞的個(gè)數(shù) 是分裂次數(shù) 的函數(shù),這個(gè)函數(shù)可以用指數(shù)函數(shù) = 表示?,F(xiàn)在,我們來(lái)研究相反的。問題,如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到1萬(wàn)個(gè),10萬(wàn)個(gè)……細(xì)胞,那么,分裂次數(shù) 就是要得到的細(xì)胞個(gè)數(shù) 的函數(shù)。根據(jù)對(duì)數(shù)的定義,這個(gè)函數(shù)可以寫成對(duì)數(shù)的形式就是 如果用 表示自變量, 表示函數(shù),這個(gè)函數(shù)就是 由反函數(shù)概念可知, 與指數(shù)函數(shù) 互為反函數(shù)這一節(jié),我們來(lái)研究指數(shù)函數(shù)的反函數(shù)對(duì)數(shù)函數(shù)
二、新課
1.對(duì)數(shù)函數(shù)的定義:函數(shù) 叫做對(duì)數(shù)函數(shù);它是指數(shù)函數(shù) 的反函數(shù)。對(duì)數(shù)函數(shù) 的定義域?yàn)?,值域?yàn)?。
2.對(duì)數(shù)函數(shù)的圖象由于對(duì)數(shù)函數(shù) 與指數(shù)函數(shù) 互為反函數(shù),所以 的圖象與 的圖象關(guān)于直線 對(duì)稱。因此,我們只要畫出和 的圖象關(guān)于 對(duì)稱的曲線,就可以得到 的圖象,然后根據(jù)圖象特征得出對(duì)數(shù)函數(shù)的性質(zhì)。
活動(dòng)設(shè)計(jì):由學(xué)生任意取底數(shù)作圖,觀察分析討論,教師引導(dǎo)、整理 3.對(duì)數(shù)函數(shù)的性質(zhì)由對(duì)數(shù)函數(shù)的圖象,觀察得出對(duì)數(shù)函數(shù)的性質(zhì)。見p87 表 圖象性質(zhì)定義域:(0,+∞)值域:r過點(diǎn)(1,0),即當(dāng) 時(shí), 時(shí) 時(shí) 時(shí) 時(shí) 在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)活動(dòng)設(shè)計(jì):學(xué)生觀察、分析討論,教師引導(dǎo)、整理4.應(yīng)用例1.(課本第94頁(yè))求下列函數(shù)的定義域:(1) ; (2) ; (3) 分析:此題主要利用對(duì)數(shù)函數(shù) 的定義域(0,+∞)求解。解:(1)由 >0得 ,∴函數(shù) 的定義域是 ;(2)由 得 ,∴函數(shù) 的定義域是 (3)由9- 得-3 ,∴函數(shù) 的定義域是 注:此題只是對(duì)數(shù)函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,應(yīng)強(qiáng)調(diào)學(xué)生注意書寫格式。例2.求下列函數(shù)的反函數(shù)① ② 解:① ∴ ② ∴
三、小結(jié):對(duì)數(shù)函數(shù)定義、圖象、性質(zhì)四、作業(yè): 課本第95頁(yè) 練習(xí) 1,2 習(xí)題2.8 1,2
讀書破萬(wàn)卷下筆如有神,以上就是差異網(wǎng)為大家整理的10篇《函數(shù)概念教案》,希望對(duì)您的寫作有所幫助,更多范文樣本、模板格式盡在差異網(wǎng)。
冪函數(shù)的概念教案篇2
教學(xué)目標(biāo):
1.進(jìn)一步理解指數(shù)函數(shù)的性質(zhì);
2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;
教學(xué)重點(diǎn):
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;
教學(xué)難點(diǎn):
指數(shù)函數(shù)圖象的平移變換.
教學(xué)過程:
一、情境創(chuàng)設(shè)
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)
練習(xí):函數(shù)=ax(a>0且a≠1)的定義域是_____,值域是______,函數(shù)圖象所過的定點(diǎn)坐標(biāo)為 .若a>1,則當(dāng)x>0時(shí), 1;而當(dāng)x<0時(shí), 1.若0<a<1,則當(dāng)x>0時(shí), 1;而當(dāng)x<0時(shí), 1.
2.情境問題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對(duì)任意的a>0且a≠1,函數(shù)=ax的圖象恒過(0,1),那么對(duì)任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過哪一個(gè)定點(diǎn)呢?
二、數(shù)學(xué)應(yīng)用與建構(gòu)
例1 解不等式:
(1) ;(2) ;
(3) ;(4) .
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
例2 說明下列函數(shù)的圖象與指數(shù)函數(shù)=2x的圖象的關(guān)系,并畫出它們的示意圖:
(1) ; (2) ;(3) ;(4) .
小結(jié):指數(shù)函數(shù)的平移規(guī)律:=f(x)左右平移 =f(x+)(當(dāng)>0時(shí),向左平移,反之向右平移),上下平移 =f(x)+h(當(dāng)h>0時(shí),向上平移,反之向下平移).
練習(xí):
(1)將函數(shù)f (x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù) 的圖象.
(2)將函數(shù)f (x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù) 的圖象.
(3)將函數(shù) 圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是 .
(4)對(duì)任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過的定點(diǎn)的坐標(biāo)是 .函數(shù)=a2x-1的圖象恒過的定點(diǎn)的坐標(biāo)是 .
小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問題就可以找到解決的突破口.
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=2x和=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.
例3 已知函數(shù)=f(x)是定義在r上的奇函數(shù),且x<0時(shí),f(x)=1-2x,試畫出此函數(shù)的圖象.
例4 求函數(shù) 的最小值以及取得最小值時(shí)的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來(lái)求解其最值.
練習(xí):
(1)函數(shù)=ax在[0,1]上的最大值與最小值的和為3,則a等于 ;
(2)函數(shù)=2x的值域?yàn)?;
(3)設(shè)a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值為14,求a的值;
(4)當(dāng)x>0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
三、小結(jié)
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;
2.指數(shù)型函數(shù)的定點(diǎn)問題;
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
四、作業(yè):
課本p71-11,12,15題.
五、課后探究
(1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù) 的定義域?yàn)?.
(2)對(duì)于任意的x1,x2r ,若函數(shù)f(x)=2x ,試比較 的大?。?/p>
教學(xué)目標(biāo):
1.通過現(xiàn)實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數(shù)概念產(chǎn)生的背景,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對(duì)應(yīng);
2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
3.通過教學(xué),逐步培養(yǎng)學(xué)生由具體逐步過渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
兩集合間用對(duì)應(yīng)來(lái)描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學(xué)過程:
一、問題情境
1.情境.
正方形的邊長(zhǎng)為a,則正方形的周長(zhǎng)為,面積為.
2.問題.
在初中,我們?cè)J(rèn)識(shí)利用函數(shù)來(lái)描述兩個(gè)變量之間的關(guān)系,如何定義函數(shù)?常見的函數(shù)模型有哪些?
二、學(xué)生活動(dòng)
1.復(fù)述初中所學(xué)函數(shù)的概念;
2.閱讀課本23頁(yè)的問題(1)、(2)、(3),并分別說出對(duì)其理解;
3.舉出生活中的實(shí)例,進(jìn)一步說明函數(shù)的對(duì)應(yīng)本質(zhì).
三、數(shù)學(xué)建構(gòu)
1.用集合的語(yǔ)言分別闡述23頁(yè)的問題(1)、(2)、(3);
問題1某城市在某一天24小時(shí)內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問題:
(1)這一變化過程中,有哪幾個(gè)變量?
(2)這幾個(gè)變量的范圍分別是多少?
問題2略.
問題3略(詳見23頁(yè)).
2.函數(shù):一般地,設(shè)a、b是兩個(gè)非空的數(shù)集,如果按某種對(duì)應(yīng)法則f,對(duì)于集合a中的每一個(gè)元素x,在集合b中都有惟一的元素和它對(duì)應(yīng),這樣的對(duì)應(yīng)叫做從a到b的一個(gè)函數(shù),通常記為=f(x),x∈a.其中,所有輸入值x組成的集合a叫做函數(shù)=f(x)的定義域.
(1)函數(shù)作為一種數(shù)學(xué)模型,主要用于刻畫兩個(gè)變量之間的關(guān)系;
(2)函數(shù)的本質(zhì)是一種對(duì)應(yīng);
(3)對(duì)應(yīng)法則f可以是一個(gè)數(shù)學(xué)表達(dá)式,也可是一個(gè)圖形或是一個(gè)表格
(4)對(duì)應(yīng)是建立在a、b兩個(gè)非空的數(shù)集之間.可以是有限集,當(dāng)然也就可以是單元集,如f(x)=2x,(x=0).
3.函數(shù)=f(x)的定義域:
(1)每一個(gè)函數(shù)都有它的定義域,定義域是函數(shù)的生命線;
(2)給定函數(shù)時(shí)要指明函數(shù)的定義域,對(duì)于用解析式表示的集合,如果沒
有指明定義域,那么就認(rèn)為定義域?yàn)橐磺袑?shí)數(shù).
四、數(shù)學(xué)運(yùn)用
例1.判斷下列對(duì)應(yīng)是否為集合a到b的函數(shù):
(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;
(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;
(3)a={1,2,3,4,5},b=n,f:x→2x.
練習(xí):判斷下列對(duì)應(yīng)是否為函數(shù):
(1)x→2x,x≠0,x∈r;
(2)x→,這里2=x,x∈n,∈r。
例2求下列函數(shù)的定義域:
(1)f(x)=x—1;(2)g(x)=x+1+1x。
例3下列各組函數(shù)中,是否表示同一函數(shù)?為什么?
a.=x與=(x)2;
b.=x2與=3x3;
c.=2x-1(x∈r)與=2t-1(t∈r);
d.=x+2x-2與=x2-4
練習(xí):課本26頁(yè)練習(xí)1~4,6.
五、回顧小結(jié)
1.生活中兩個(gè)相關(guān)變量的刻畫→函數(shù)→對(duì)應(yīng)(a→b)
2.函數(shù)的對(duì)應(yīng)本質(zhì);
3.函數(shù)的對(duì)應(yīng)法則和定義域.
冪函數(shù)的概念教案篇3
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.
教學(xué)難點(diǎn):概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的.
生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
解:1、y=30n
y是,n是自變量
2、 ,n是,a是自變量.
(二)講授新課
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義.
(3)小題的 是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零. 的被開方數(shù)是 .
同理,第(6)小題 也是二次根式, 是被開方數(shù),
.
解:(1)全體實(shí)數(shù)
(2)全體實(shí)數(shù)
(3)
(4) 且
(5)
(6)
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成 或 .在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里 與 是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
冪函數(shù)的概念教案篇4
一、教材分析及處理
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識(shí)在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識(shí);函數(shù)的概念是運(yùn)動(dòng)變化和對(duì)立統(tǒng)一等觀點(diǎn)在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,《函數(shù)》教學(xué)設(shè)計(jì)。
對(duì)函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識(shí)的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對(duì)應(yīng)語(yǔ)言刻畫的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學(xué)重點(diǎn)是函數(shù)的概念,難點(diǎn)是對(duì)函數(shù)概念的本質(zhì)的理解。
學(xué)生現(xiàn)狀
學(xué)生在第一章的時(shí)候已經(jīng)學(xué)習(xí)了集合的概念,同時(shí)在初中時(shí)已學(xué)過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識(shí)來(lái)理解函數(shù)概念,結(jié)合原有的知識(shí)背景,活動(dòng)經(jīng)驗(yàn)和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動(dòng)中,達(dá)到理解知識(shí)、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗(yàn)和情感體驗(yàn),是在教學(xué)設(shè)計(jì)中應(yīng)思考的。
二、教學(xué)三維目標(biāo)分析
1、知識(shí)與技能(重點(diǎn)和難點(diǎn))
(1)、通過實(shí)例讓學(xué)生能夠進(jìn)一步體會(huì)到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識(shí)的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。
(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會(huì)求簡(jiǎn)單函數(shù)的定義域、值域、判斷兩個(gè)函數(shù)是否相等等。
(3)、掌握定義域的表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過程與方法
函數(shù)的概念及其相關(guān)知識(shí)點(diǎn)較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問題:
(1)、首先通過多媒體給出實(shí)例,在讓學(xué)生以小組的形式開展討論,運(yùn)用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識(shí),找出不同點(diǎn)與相同點(diǎn),實(shí)現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
(2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。
(3)、加強(qiáng)學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會(huì)本節(jié)知識(shí)點(diǎn),也要讓學(xué)生會(huì)自我主動(dòng)學(xué)習(xí)。
3、情感態(tài)度與價(jià)值觀
(1)、通過多媒體給出實(shí)例,學(xué)生小組討論,給出自己的結(jié)論和觀點(diǎn),加上老師的輔助講解,培養(yǎng)學(xué)生的實(shí)踐能力和和大膽創(chuàng)新意識(shí),教案《《函數(shù)》教學(xué)設(shè)計(jì)》。
(2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動(dòng)手能力和小組團(tuán)結(jié)能力。
三、教學(xué)器材
多媒體ppt課件
四、教學(xué)過程
教學(xué)內(nèi)容教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖
?函數(shù)》課題的引入(用時(shí)一分鐘)配著簡(jiǎn)單的音樂,從簡(jiǎn)單的例子引入函數(shù)應(yīng)用的廣泛,將同學(xué)們的視線引入函數(shù)的學(xué)習(xí)上聽著悠揚(yáng)的音樂,讓同學(xué)們的視線全注意在老師所講的內(nèi)容上從貼近學(xué)生生活入手,符合學(xué)生的認(rèn)知特點(diǎn)。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數(shù)的世界,體現(xiàn)了新課標(biāo)的理念:從知識(shí)走向生活
知識(shí)回顧:初中所學(xué)習(xí)的函數(shù)知識(shí)(用時(shí)兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡(jiǎn)單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡(jiǎn)單作圖認(rèn)真聽老師回顧初中知識(shí),發(fā)現(xiàn)異同在初中知識(shí)的基礎(chǔ)上引導(dǎo)學(xué)生向更深的內(nèi)容探索、求知。即復(fù)習(xí)了所學(xué)內(nèi)容又做了即將所學(xué)內(nèi)容的鋪墊
思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時(shí)四分鐘)給出兩個(gè)簡(jiǎn)單的問題讓同學(xué)們思考,講述初中內(nèi)容無(wú)法給出正確答案,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)結(jié)合老師所回顧的知識(shí),結(jié)合自己所掌握的知識(shí),思考老師給出的問題,小組形式作討論,從簡(jiǎn)單問題入手,循序漸進(jìn),引出本節(jié)主要知識(shí),回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識(shí),前后聯(lián)系、銜接
新知識(shí)的講解:從概念開始講解本節(jié)知識(shí)(用時(shí)三分鐘)詳細(xì)講解函數(shù)的知識(shí),包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識(shí)講解回到問題身上,解決問題
對(duì)提問的回答(用時(shí)五分鐘)引導(dǎo)學(xué)生自己解決開始所提的兩個(gè)問題,然后同個(gè)互動(dòng)給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來(lái)更好的掌握知識(shí)
函數(shù)區(qū)間(用時(shí)五分鐘)引入函數(shù)定義域的表示方法簡(jiǎn)潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法
注意點(diǎn)(用時(shí)三分鐘)做個(gè)簡(jiǎn)單的的回顧新內(nèi)容,把難點(diǎn)重點(diǎn)提出來(lái),讓同學(xué)們記住通過問題回答,概念解答,把重難點(diǎn)給出,提醒學(xué)生注意內(nèi)容和知識(shí)點(diǎn)
習(xí)題(用時(shí)十分鐘)給出習(xí)題,分析題意在稿紙上簡(jiǎn)單作答,回答問題通過習(xí)題練習(xí)明確重難點(diǎn),把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系
映射(用時(shí)兩分鐘)從概念方面講解映射的意義,象與原象在新知識(shí)的基礎(chǔ)上了解更多知識(shí),映射的學(xué)習(xí)給以后的知識(shí)內(nèi)容做更好的鋪墊
小結(jié)(用時(shí)五分鐘)簡(jiǎn)單講述本節(jié)的知識(shí)點(diǎn),重難點(diǎn)做筆記前后知識(shí)的連貫,總結(jié),使學(xué)生更明白知識(shí)點(diǎn)
五、教學(xué)評(píng)價(jià)
為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認(rèn)識(shí),獲得認(rèn)識(shí)客觀世界的體驗(yàn),本課采用"突出主題,循序漸進(jìn),反復(fù)應(yīng)用"的方式,在不同的場(chǎng)合考察問題的不同側(cè)面,由淺入深。本課在教學(xué)時(shí)采用問題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對(duì)函數(shù)概念的理解也逐層深入,從而準(zhǔn)確理解函數(shù)的概念。函數(shù)引入中的三種對(duì)應(yīng),與初中時(shí)學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對(duì)應(yīng)既是函數(shù)知識(shí)的生長(zhǎng)點(diǎn),又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。
在培養(yǎng)學(xué)生的能力上,本課也進(jìn)行了整體設(shè)計(jì),通過探究、思考,培養(yǎng)了學(xué)生的實(shí)踐能力、觀察能力、判斷能力;通過揭示對(duì)象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過實(shí)際問題的解決,培養(yǎng)了學(xué)生的分析問題、解決問題和表達(dá)交流能力;通過案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學(xué)設(shè)計(jì),學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達(dá)到了課程標(biāo)準(zhǔn)的要求,體現(xiàn)了課改的教學(xué)理念。
冪函數(shù)的概念教案篇5
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
(1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;
教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù);
教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時(shí)間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
(3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題
備用實(shí)例:
我國(guó)xxxx年4月份非典疫情統(tǒng)計(jì):
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
(一)函數(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù)(function).
記作:y=f(x),x∈a.
其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈a}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
(2)無(wú)窮區(qū)間;
(3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
(由學(xué)生完成,師生共同分析講評(píng))
(二)典型例題
1.求函數(shù)定義域
課本p20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本p22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本p21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。
鞏固練習(xí):
○1課本p22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)課堂練習(xí)
求下列函數(shù)的定義域
(1)
(2)
(3)
(4)
(5)
(6)
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來(lái)表示集合。
四、作業(yè)布置
課本p28習(xí)題1.2(a組)第1—7題(b組)第1題