小學數(shù)的運算教案5篇

時間:2022-11-04 作者:Mute 備課教案

教案直白的說就是教師對教學任務提前做出的分析和判斷,寫教案可以幫助我們老師提升自己的教學效率,下面是范文社小編為您分享的小學數(shù)的運算教案5篇,感謝您的參閱。

小學數(shù)的運算教案5篇

小學數(shù)的運算教案篇1

教學目標:

(1)結合具體情境,理解小數(shù)四則混合運算與整數(shù)四則混合運算的運算順序相同,掌握小數(shù)四則混合運算的運算順序,能正確計算小數(shù)四則混合運算;

(2)體會小數(shù)四則混合運算在實際生活上的應用價值,能利用小數(shù)四則混合運算的知識解決生活中的實際問題。

(3)進一步培養(yǎng)學生遷移、類推的數(shù)學能力,使學生養(yǎng)成認真計算的習慣,堅定學生學好數(shù)學的信心。

教學重點:

掌握小數(shù)四則混合運算的運算順序,能正確計算小數(shù)四則混合運算。

教學難點:

掌握小數(shù)四則混合運算的運算順序,使學生體會遷移、類推的數(shù)學思想,運用數(shù)學知識解決生活中的實際問題。

教學準備:

多媒本課件、練習題卡。

教法學法:

新課程標準指出:教師是學習的組織者、引導者、合作者,根據這一理念,我遵循“激”、“導”、“探”、“放”的原則,在教學中我精心設計準備題,誘導學生思考,鼓勵學生概括交流,并讓學生運用所學知識遷移、類推,促進學生對新知的內化和建構。

在合理選擇教法的同時,我還注重了對學生思維能力、學習能力的培養(yǎng),融觀察、比較、討論、交流、自主探究等學習方法為一體,讓學生利用已掌握的整數(shù)四則混合運算的順序來解決新課。教學中,突出“五讓”的特色:書本讓學生自學;問題讓學生提出;規(guī)律讓學生發(fā)現(xiàn);疑難讓學生研討;評價讓學生參與。以上的“五讓”,符合了新課程標準的理念,真正體現(xiàn)了學生是學習的主體。

教學過程:

一、創(chuàng)設情境,揭示課題(大約10分鐘)

1、談話引入。

2、出示情景圖。

讓學生明確題中的數(shù)學信息,讓學生自己提出問題:用20元買3本筆記本和1支鋼筆,還剩多少元?讓學生獨立計算,并說出解題的思路。

3、回顧整數(shù)四則混合運算的運算順序。

只有加減法或只有乘除法的運算,應從左往右依次計算;如果既有加減法又有乘除法,要先算乘除法,再算加減法。在有括號的算式里,要先算小括號里面的,再算中括號里面的。

4、揭示課題。

在實際生活中,文具的單價不僅僅是整數(shù),還有很多小數(shù)的情況。 小明今天運氣就非常的好,趕上了文具店慶周年降價促銷的活動,價格由整數(shù)變成了小數(shù)。

由此引入今天的課題:小數(shù)四則混合運算。(板書課題)

二、組織活動,探索新知。(大約16分鐘)

1、自主探索,嘗試練習

使學生明白:雖然,文具的單價發(fā)生了變化,但是解題思路沒有變,讓學生獨立列式計算。如果用分步計算的'要鼓勵學生根據解題思路再列出它的綜合算式。

教學中,要引導學生明白綜合算式的運算順序與解題思路的一致性,括號在綜合算式中所起的重要作用。對一次性用綜合算式解答的同學要加以及時的表揚。

2、交流討論,歸納總結

引導學生觀察、比較這四個算式,通過小組交流、討論得出:小數(shù)四則混合運算的運算順序與整數(shù)四則混合運算的運算順序相同。

設計意圖:在這兩個環(huán)節(jié)的教學中,我讓學生先解決整數(shù)作條件的問題,再解決小數(shù)作條件的問題,然后再引導學生對所列出的整數(shù)算式和小數(shù)算式進行觀察比較從而讓學生深刻地體會到小數(shù)四則混合運算的順序與整數(shù)四則混合運算的順序相同,較好地突破了本節(jié)課的重點和難點。

三、實踐運用,鞏固新知。(大約10分鐘)

為了讓學生能夠更好的掌握小數(shù)四則混合運算的運算順序,正確地進行計算,我設計了四道闖關練習題。

第一關、我會算。

368+32×5-88 15×(107-35+18)

30× [480÷(24-8)] 530+12×25 ÷60

通過練習,鞏固了學生對新知識的掌握,培養(yǎng)學生正確計算的能力。

第二關、我會解決。

讓學生體會小數(shù)四則混合運算在實際生活中的廣泛應用,培養(yǎng)學生運用數(shù)學知識解決簡單實際問題的能力。

四、全課小結,交流評價。(大約4分鐘)

課堂總結是對本節(jié)課所學知識進行歸納總結,以及對學生學習情況的評價,也是對學生情感、態(tài)度進行評價。

小學數(shù)的運算教案篇2

教學目標:

(一)掌握整數(shù)、小數(shù)四則混合運算的運算順序,會使用中括號,能夠比較熟練地計算整數(shù)、小數(shù)四則混合運算式題。

(二)通過對整數(shù)、小數(shù)四則混合運算的運算順序的總結、歸納,提高學生的抽象概括能力。

(三)培養(yǎng)學生養(yǎng)成良好的學習習慣,提高學生的計算能力。

教學重點:

掌握整數(shù)、小數(shù)四則混合運算的運算順序。

教學難點:

提高學生計算正確率以及約等號的正確使用。

教學過程:

一、復習準備

1.口算

12+0.12=7.2-0.2= 3.5÷0.35=

2.95+0.05= 5-0.6= 2.8÷0.14=

8÷12.5= 1.2+2.8-3.99= 4×1.72=

3.74+6.26= 4.5×6= 0.25×4÷0.2=

2÷4=20×0.2=20.75-9.5=

3.5×8×0.125=

2.提問

(1)我們學過哪幾種運算?

(2)我們把加法、減法、乘法、除法統(tǒng)稱為什么運算?(加法、減法、乘法、除法統(tǒng)稱為四則運算。)

(3)整數(shù)四則混合運算的順序是什么?

二、學習新課

1.學習例1:3.7-2.5+4.6=3.6×6÷0.9=

(1)思考:以上兩題中分別含有什么運算?運算順序怎樣?

(2)學生試算后訂正。

3.7-2.5+4.6

=1.2+4.6

=5.8

3.6×6+0.9

=21.6÷0.9

=24

(3)小結運算順序

①教師講解:加法和減法叫做第一級運算,乘法、除法叫做第二級運算。

②以上兩題中分別含有幾級運算?運算順序怎樣?(①題中只含有第一級運算,按從左往右依次計算;②題中只含有第二級運算,也按從左往右依次計算。)

③誰能用簡明的語言概括以上兩題的運算順序?(一個算式里,如果只含有同一級運算,要從左往右依次計算。)

2.學習例2:35.6-5×1.73= 6.75+2.52÷1.2=

(1)觀察以上兩題中含有幾級運算?應先做哪步運算,后做哪步運算?

(2)學生計算后訂正。

(3)小結。

以上兩題都是含有兩級運算的算式,應先做哪級運算,后做哪級運算?

討論得出:一個算式里,如果含有兩級運算,要先做第二級運算,后做第一級運算。

(4)練習:先說出運算順序,再算出得數(shù)。

①p37“做一做”;②3.6÷1.2+0.5×5。

思考:①上題如果要先算1.2+0.5應怎么辦?(加小括號。)

②如果要先算(1.2+0.5)×5應怎么辦?(加中括號。)

教師介紹:小括號“( )”是公元17世紀由荷蘭人吉拉特首先使用。中括號“[ ]”是公元17世紀首次出現(xiàn)在英國的互里士的著作中。

小括號和中括號的作用是什么呢?(改變算式中的運算順序。)

3.試做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=

(1)兩題運算順序是怎樣的?(一個算式里,如果有括號,要先算小括號里面的,再算中括號里面的。)

(2)學生試做

3.6÷(1.2+0.5)×5

=3.6÷1.7×5

3.6÷[(1.2+0.5)×5]

=3.6÷[1.7×5]

=3.6÷8.5

計算中出現(xiàn)3.6÷1.7和3.6÷8.5除不盡時,教師講解

在四則混合運算過程中,遇到除法的商的小數(shù)位數(shù)較多或出現(xiàn)循環(huán)小數(shù)時,一般保留兩位小數(shù),再進行計算。

要想保留兩位小數(shù),只需除到第幾位?(一般只需除到第三位小數(shù),用“四舍五入法”保留兩位小數(shù)。)

學生繼續(xù)計算后,訂正

3.6÷(1.2+0.5)×5

=3.6÷1.7×5

≈2.12×5

=10.6

3.6÷[(1.2+0.5)×5]

=3.6÷[1.7×5]

=3.6÷8.5

≈0.42

提問:為什么①題中第二步要用約等于號“≈”,而第三步卻要用等號“=”。(因為在第二步計算時,3.6÷1.7除不盡,在第二步計算時,要取它的商的近似值2.12,所以在第二步要用“≈”連接;而第三步用2.12乘以5,得到的積10.6是準確的結果,應該用等號連接。)

4.小結

(1)什么情況用等于號?什么時候用約等于號?(當除不盡或者商的小數(shù)位數(shù)較多時,用“四舍五入法”保留兩位小數(shù),在保留兩位小數(shù)取近似值的這一步,要寫約等于號;當取準確值時,用等號。)

(2)要改變算式的運算順序,可以怎么辦?(可以使用小括號、中括號。)

(3)有括號的算式,運算順序怎樣?(一個算式里,如果有括號,要先算小括號里面的,再算中括號里面的。)

三、鞏固反饋

1.p38:做一做。

2.p40:1①②,2①②。

(1)說出運算順序;

(2)計算并且驗算;

(3)訂正并小結驗算方法。

驗算方法:①原式驗算;②互逆驗算;③交換驗算。

3.判斷下面各題,哪些是對的,哪些是錯的,并說明原因。

(1)0.8-0.8×0.7=0( );

(2)1.6+1.4×2=6( );

(3)50-3.9+6.1=40( );

(4)20÷2.5×4=32( );

(5)9.6+0.4-9.6+0.4=0( );

(6)4.8×2÷4.8×2=1( )。

4.p40:4。先計算填空,再列出綜合算式。

5.課后作業(yè):p40:1③④,2③④,3。

小學數(shù)的運算教案篇3

一、素材的選取。

本單元我們選取的素材是高速運轉的濟南長途汽車總站和高速運轉的濟青高速,選取這個素材原因主要有以下三點:

(1)濟南長途汽車總站,連續(xù)多年創(chuàng)下旅客發(fā)送量、發(fā)送班次和售票收入三項全國第一,被稱為“中華第一站”。 據說濟南長途汽車站占地110畝,日客流量4萬多,客票年收入達到4—5億元。1999年被中國企業(yè)聯(lián)合會、中國企業(yè)家協(xié)會授予“中華第一站”稱號,這個榮譽一直保持到今天。

(2)山東的高速公路全國聞名。 說起山東的高速公路來,在全國是的,俗話說得好“要想富,先修路”。據有關經濟專家研究,一個國家的富裕程度與其公路的優(yōu)劣,成正相關。可見,我省經濟之所以能夠高度發(fā)展,尋其原因,不言而喻。

(3)以比較真實的數(shù)據為素材,體現(xiàn)了數(shù)學的價值。 本單元提供的數(shù)據與第一單元一樣,都是一些真實的數(shù)據。旨在說明交通生活中也實實在在存在著數(shù)學,數(shù)學無處不在。

二、本單元的情景串。

本單元有2個信息窗。

依次是: 單元知識分析 單元教材解讀 信息窗1的解讀 已學的知識 乘法的認識 整數(shù)的四則混合運算 (三下52×47-50×47 用字母表示數(shù)(四上1) 加法運算律 (四上1) 一般行程問題 (二下p105,三上p76,p78,三下5)路程、時間、速度三者 數(shù)量關系。 本單元新學知識 乘法結合律 乘法交換律(乘除法各部分之間的'關系) 乘法分配律(相遇問題) 運用乘法運算律進行簡便運算。 后續(xù)學習的知識 乘法運算律在小數(shù)和分數(shù)計算中的推廣 用方程解行程問題 (山東版有關行程問題的學習都安排在簡易方程單元。) 高速運轉的長途汽車站 高速運轉的濟青高速

1、情景圖的解讀。

此信息窗的題目為“高速運轉的長途汽車站”。情景圖上呈現(xiàn)的是一幅濟南長途汽車總站的真實照片。照片的下面附有一張20xx年濟南長途汽車總站大巴車中巴日發(fā)送旅客情況統(tǒng)計表。

2、情景圖中的信息。

是2組數(shù)據:

(1)平均每天發(fā)車的數(shù)量

(2)平均每車次的乘客人數(shù)。

3、例題的設置與功能。

本信息窗一共有3個例題,包含的知識點分別是:

(1)乘法結合律。

(2)乘法交換律。

(3)運用乘法交換律和結合律進行簡便運算。 乘除法各部分的關系。(第六題)

小學數(shù)的運算教案篇4

教學內容:

課本第39頁例1、例2.

教學目標:

1、使學生理解第一級運算和第二級運算的含義。

2、使學生掌握無括號的四則混合運算順序,并能正確地進行計算。

3、能在學生掌握整數(shù)四則混合運算和小數(shù)四則混合運算的基礎上,對整數(shù)、小數(shù)四則混合運算進行概括、總結。

4、培養(yǎng)學生認真嚴格的態(tài)度。

教學過程:

一、復習鋪墊

(1)設問:我們學過哪些計算?(學生回答后,告訴學生:加法、減法、乘法和除法這四種運算,統(tǒng)稱為四則運算。)

(2)填空回答。

①在一個算式里,如果只有()或者只有(),要從左往右依次計算。

②在一個算式里,如果有(),又有(),要先做()后做()。

(3)在一個算式里,如果有括號,要先算()。

二、新授

1、出示課題:整數(shù)、小數(shù)四則混合運算。

2、介紹四則運算:我們學過的加、減、乘、除四種運算,統(tǒng)稱四則運算。

3、教學例1.

(1)板書例1:3.7-2.5+4.63.6×6÷0.9

然后設問

①這些算式里有哪些運算?

在學生回答的基礎上告訴學生:加法和減法叫做第一級運算,乘法和除法叫做第二級運算。

②這兩個算式的運算順序怎樣?

③如果用“第一級運算”代替“加、減法”,用“第二級運算”代替“乘、除法”,運算順序怎樣敘述。

根據學生回答,改變復習填空①的敘述。

④再概括一點講,這句話可以怎樣敘述?

根據學生回答,改變復習填空①的敘述,出示教材結語。

(2)學生完成例1的計算。

4、教學例2.

(1)板書例2:35.6-5×1.73,6.75+2.52÷1.2,然后設問

①算式里含有幾級運算?

②運算順序怎樣?

根據學生回答,改變復習填空②的敘述,出示教材結語。

(2)學生把沒有做完的繼續(xù)做完。(一學生板演,其余做在書上。)

(3)完成例2下面的“做一做”習題。

5、小結:混合運算步驟比較多,容易發(fā)生錯誤,我們要養(yǎng)良好的習慣,計算時要做到:“一看、二想、三劃、四算、五查”。在沒有括號算式中,先算乘除,后算加減。

三、鞏固練習。

1、(1)填空。(出示,學生口答)

①加、減、乘、除四則運算統(tǒng)稱為()。

②加法和減法叫做第()級運算,乘法和除法叫做第()級運算。

③一個算式里,如果只含有同一級運算要從()計算;如果含有兩級運算,要先做第()級運算,后做第()級運算;如果有兩種括號,要先算()括號里面的,再算()括號里面的。

2、課本第39頁做一做。

四、作業(yè)。

練習十第1、4題。

小學數(shù)的運算教案篇5

教學內容:

教科書第81、82頁練習十五第6—11題。

教學目標:

1、進一步理解并掌握分數(shù)四則混合運算的運算順序,并能按運算順序正確進行計算,并能根據運算律和運算性質進行一些分數(shù)的簡便運算。

2、在學習分數(shù)四則混合運算的過程中,進一步積累數(shù)學學習的經驗,用分數(shù)四則混合運算解決一些實際問題。

教學重、難點:

根據整數(shù)的運算律和運算性質對分數(shù)四則混合運算進行簡便計算。

教學措施:

設計相應的計算題和實際問題,關注學習困難生的學習情況。

教學準備:

教學光盤及補充題

教學過程:

一、基本練習

1、練習十五第6題。

學生先回憶等式的性質,指名說一說。

觀察每個方程,說說方程的特點。

提示:都要把方程的左邊進行化簡,再應用等式的性質求方程的解。

學生獨立解每個方程,指名板演,進行講評,提醒學生自覺進行檢驗。

2、計算下列各題,能簡算的要簡算。

(7/8—2/3)×(7/10+1/5)(2/5+1/3)÷4/5+3/4

3/10÷[1/2×(2/5+4/5)] 7/16÷1/10—7/16÷1/9

(1—1/6÷5/12)×7/6(4/25×99+4/25)÷1/8

學生獨立計算,每人任選三題,同時指名學生板演。

教師結合學生板演情況進行講評并及時總結分數(shù)四則混合運算的運算順序。

3、練習十五第8題。

(1)圖中告訴我們哪些信息,你會計算梯形的面積嗎?

(2)學生獨立列式計算,任選一題。

4、練習十五第9—11題。

(1)分析第9題,學生先讀題并列出算式,然后請學生說說解題思路。

(2)分析第10題,先說說數(shù)量關系再列算式,要讓學生明白要求兩個小隊平均每人采集樹種多少千克,先要算這兩個小隊一共采集樹種的千克數(shù)和這兩個小隊的總人數(shù)。

(3)分析第11題,解決每一問時鼓勵學生說數(shù)量關系并注意第2小題與第3小題之間的聯(lián)系。

二、拓展練習

解決實際問題:

1、一個食堂,星期一用去煤氣7/4立方米,星期二用去煤氣3/2立方米,兩天用的煤氣量占本周計劃用氣量的3/8。這一周計劃用多少立方米煤氣?

2、工程隊運來黃沙9/2噸,運來的水泥比黃沙重量的2/3少1/5噸。黃沙和水泥一共運來多少噸?

3、小華看一本120頁的故事書,前3天看了總頁數(shù)的3/4,后2天準備按1:2看完剩下的頁數(shù),最后一天要看多少頁?

三、全課總結

進行分數(shù)四則混合運算時不僅要注意運算順序,還要注意分數(shù)加、減法與分數(shù)乘、除法的計算方法的不同,必須看清什么時候需要通分,什么時候需要先約分再計算;解決實際問題時要認真讀題,分析數(shù)量關系再列式解答。

四、布置作業(yè)

練習十五第7、9、10、11題。