為了讓課堂變得更生動,一定要將教學設(shè)計寫好,教學設(shè)計是把教學原理轉(zhuǎn)化為教學材料和教學活動的計劃,以下是范文社小編精心為您推薦的高中數(shù)學書教學設(shè)計模板6篇,供大家參考。
高中數(shù)學書教學設(shè)計模板篇1
一、探究式教學模式概述
1、探究式教學模式的含義。探究式教學就是學生在教師引導下,像科學家發(fā)現(xiàn)真理那樣以類似科學探究的方式來展開學習活動,通過自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識規(guī)律的教學模式。它的基本特征是教師不把跟教學內(nèi)容有關(guān)的內(nèi)容和認知策略直接告訴學生,而是創(chuàng)造一種適宜的認知和合作環(huán)境,讓學生通過探究形成認知策略,從而對教學目標進行一種全方位的學習,實現(xiàn)學生從被動學習到主動學習,培養(yǎng)學生的科學探究能力、創(chuàng)新意識和科學精神??梢姡骄渴浇虒W主張把學習知識的過程和探究知識的過程統(tǒng)一起來,充分發(fā)揮學生學習的自主性和參與性。
2、堂探究式教學的實質(zhì)。課堂探究式教學的實質(zhì)是使學生通過類似科學家科學探究的過程來理解科學探究概念和科學規(guī)律的本質(zhì),并培養(yǎng)學生的科學探究能力。具體地說,它包括兩個相互聯(lián)系的方面:一是有一個以“學”為中心的探究性學習環(huán)境。在這個環(huán)境中有豐富的教學資源,而且這些資源是圍繞某個知識主題來展開的。這個學習環(huán)境具有民主和諧的課堂氣氛,它使學生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗其設(shè)想。二是教師可以給學生提供必要的幫助和指導,使學生在研究中能明確方向。這說明探究式教學的本質(zhì)特征是不直接把與教學目標有關(guān)的概念和認知策略告訴學生,取而代之的是教師創(chuàng)造出一種智力交流和社會交往的環(huán)境,讓學生通過探究自己發(fā)現(xiàn)規(guī)律。
3、探究式教學模式的特征。
(1)問題性。問題性是探究式教學模式的關(guān)鍵。能否提出對學生具有挑戰(zhàn)性和吸引力的問題,使學生產(chǎn)生問題意識,是探究教學成功與否的關(guān)鍵所在。恰當?shù)膯栴}會激起學生強烈的學習愿望,并引發(fā)學生的求異思維和創(chuàng)造思維。現(xiàn)代教育心理學研究提出:“學生的學習過程和科學家的探索過程在本質(zhì)上是一樣的,都是一個發(fā)現(xiàn)問題、分析問題、解決問題的過程?!彼耘囵B(yǎng)學生的問題意識是探究式教學的重要使命。
(2)過程性。過程性是探究式教學模式的重點。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動過程,也就很難達到清楚、全面理解的境界?!碧骄渴浇虒W模式正是考慮到這些人的認知特點來組織教學的,它強調(diào)學生探索知識的經(jīng)歷和獲得新知識的親身感悟。
(3)開放性。開放性是探究式教學模式的難點。探究式教學模式總是綜合合作學習、發(fā)現(xiàn)學習、自主學習等學習方式的長處,培養(yǎng)學生良好的學習態(tài)度和學習方法,提倡和發(fā)展多樣化的學習方式。探究式教學模式要面對大量開放性的問題,教學資源和探究的結(jié)論面對生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學生的學帶來了機遇與挑戰(zhàn)。
二、教學設(shè)計案例
1、教學內(nèi)容:數(shù)字排列中3、9的探究式教學。
2、教學目標。
(1)知識與技能:掌握數(shù)字排列的知識,能靈活運用所學知識。
(2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。
(3)情感態(tài)度與價值觀:培養(yǎng)學生觀察、分析、推理、歸納等綜合能力,讓學生體會到認識客觀規(guī)律的一般過程。
3、教學方法:談話探究法,討論探究法。
4、教學過程。
(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學第十章的教學中,有關(guān)數(shù)字排列的問題占有重要位置。我們曾經(jīng)做過的有關(guān)數(shù)字排列的題目,如“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點?
(2)提出問題。
問題1:在用1、2、3、4、5、6六個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()
a、36個b、18個c、12個d、24個
問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?
(3)探究思考。點評:乍一看問題1,對于由若干個數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點,尋求解決問題的途徑。
教師:同學們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個能被9整除的數(shù),如981、1872等,看看它們有何特點?
學生:它們都滿足“各位數(shù)字之和能被9整除”。
教師:此結(jié)論的正確性如何?
學生:老師,我們證明此結(jié)論的正確性,好嗎?
教師:好。
學生:證明:不妨以n是一個四位數(shù)為例證之。
設(shè)n=1000a+100b+10c+d(a,b,c,d∈n)依條件,有a+b+c+d=9m(m∈n)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈n
∴ 111a+11b+c+m∈n
所以n能被9整除
同理可證定理的后半部分。
教師:看來上述結(jié)論正確。所以得到如下定理。
定理:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請同學們先解答問題1。
學生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:啟發(fā)學生觀察這些數(shù)字有何特點?提問學生。
學生:可以看出只要從1、2、3、4、5、6這六個數(shù)中,選取的四個數(shù)字中含1(或2),或者同時含1、2,選取的四個數(shù)字之和都不是9的倍數(shù)。
教師:請學生們繼續(xù)嘗試選取其他數(shù)字試一試。
學生:3+4+5+6=18是9的倍數(shù)。
教師:因此用1、2、3、4、5、6六個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進行全排列所得,共有=24(個)。
故應(yīng)選d。
(4)學以致用。
問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?
教師:從上面的定理知:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。同學們對問題2有何想法?
學生討論:
學生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。
學生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個數(shù)字可分兩類:一類是5個數(shù)字中無0,另一類是5個數(shù)字中有0(但不含3)。
學生3:第一類:5個數(shù)字中無0的五位偶數(shù)有。
第二類:5個數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個位有個;第二,個位是2或4有,所以共有+ 。
學生4:由分類計數(shù)原理得:能被6整除的無重復(fù)數(shù)字的五位數(shù)共有+ + =108(個)。
(5)概括強化。
重點:了解數(shù)字排列問題的特點,理解掌握數(shù)字排列中3、9問題的規(guī)律。
難點:數(shù)字排列知識的靈活應(yīng)用。
關(guān)鍵:證明的思路以及定理的得出。
新學知識與已知知識之間的區(qū)別和聯(lián)系:已知知識“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除”。新學知識“如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。都是數(shù)字排列知識,要學會靈活應(yīng)用。
(6)作業(yè)。請同學們自擬練習題,以求達到熟練解決此類問題的目的。
總之,探究式教學模式是針對傳統(tǒng)教學的種種弊端提出來的,新課程改革強調(diào)改變課程過于注重知識的傳授和過于強調(diào)接受式學習的狀況,倡導學生主動參與樂于探究、勤于動手,讓學生經(jīng)歷科學探究過程,學習科學研究方法,并強調(diào)獲得知識、技能的過程成為學會學習和形成價值觀的過程,以培養(yǎng)學生的探究精神、創(chuàng)新意識和實踐能力。
高中數(shù)學書教學設(shè)計模板篇2
一、教學內(nèi)容分析:
本節(jié)教材選自人教a版數(shù)學必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學習中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學空間點、線、面位置關(guān)系的基礎(chǔ)作為學習的出發(fā)點,結(jié)合有關(guān)的實物模型,通過直觀感知、操作確認(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學習對培養(yǎng)學生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學習作用重大。
二、學生學習情況分析:
任教的學生在年段屬中上程度,學生學習興趣較高,但學習立幾所具備的語言表達及空間感與空間想象能力相對不足,學習方面有一定困難。
三、設(shè)計思想
本節(jié)課的設(shè)計遵循從具體到抽象的原則,適當運用多媒體輔助教學手段,借助實物模型,通過直觀感知,操作確認,合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結(jié)合,讓學生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學的概念,領(lǐng)會數(shù)學的思想方法,養(yǎng)成積極主動、勇于探索、自主學習的學習方式,發(fā)展學生的空間觀念和空間想象力,提高學生的數(shù)學邏輯思維能力。
四、教學目標
通過直觀感知——觀察——操作確認的認識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準確使用數(shù)學符號語言、文字語言表述判定定理。培養(yǎng)學生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學生在觀察、探究、發(fā)現(xiàn)中學習,在自主合作、交流中學習,體驗學習的樂趣,增強自信心,樹立積極的學習態(tài)度,提高學習的自我效能感。
五、教學重點與難點
重點是判定定理的引入與理解,難點是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。
六、教學過程設(shè)計
(一)知識準備、新課引入
提問1:根據(jù)公共點的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??
提問2:根據(jù)直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認為方便嗎?談?wù)勀愕目捶?,并指出是否有別的判定途徑。
(設(shè)計意圖:通過提問,學生復(fù)習并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準備。)
(二)判定定理的探求過程
1、直觀感知
提問:根據(jù)同學們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學生到教室門前作演示),然后教師用多媒體動畫演示。
(學情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當是很自然的,但老師要預(yù)見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。)
2、動手實踐
教師取出預(yù)先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動,觀察另一邊與桌面的位置給人以平行的感覺,而當把直角腰放在桌面上并轉(zhuǎn)動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。
(設(shè)計意圖:設(shè)置這樣動手實踐的情境,是為了讓學生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學生學在情境中,思在情理中,感悟在內(nèi)心中,學自己身邊的數(shù)學,領(lǐng)悟空間觀念與空間圖形性質(zhì)。)
3、探究思考
(1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個要素:
①平面外一條線
②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號表示為平面內(nèi)一條直線
③這兩條直線平行
(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?
4、歸納確認:(多媒體幻燈片演示)
直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。
簡單概括:(內(nèi)外)線線平行?線面平行a符號表示:ba||? a||b??
溫馨提示:
作用:判定或證明線面平行。
關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。
思想:空間問題轉(zhuǎn)化為平面問題
(三)定理運用,問題探究(多媒體幻燈片演示)
1、想一想:
(1)判斷下列命題的真假?說明理由:
①如果一條直線不在平面內(nèi),則這條直線就與平面平行()
②過直線外一點可以作無數(shù)個平面與這條直線平行( )
③一直線上有二個點到平面的距離相等,則這條直線與平面平行( )
(2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? (學情預(yù)設(shè):設(shè)計這組問題目的是強調(diào)定理中三個條件的重要性,同時預(yù)設(shè)(1)中的③學生可能認為正確的,這樣就無法達到老師的預(yù)設(shè)與生成的目的,這時教師要引導學生思考,讓學生想象的空間更廣闊些。此外教師可用預(yù)先準備好的羊毛針與泡沫板進行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學生空間想象力強,能按老師的要求生成正確的結(jié)果則就由個別學生進行演示。)
2、作一作:
設(shè)a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?
先由學生討論交流,教師提問,然后教師總結(jié),并用準備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。
(設(shè)計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認識,更重要的是培養(yǎng)學生空間感與思維的嚴謹性。)
3、證一證:
例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef ||平面bcd。
變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結(jié)ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。
(設(shè)計意圖:設(shè)計二個變式訓練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養(yǎng)學生的識圖能力與邏輯推理能力。)例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef ||平面bdd1b1分析:根據(jù)判定定理必須在平
面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。
思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。
思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。
(知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法)
4、練一練:
練習1:見課本6頁練習1、2
練習2:將兩個全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點,求證:mn ||平面bce。
變式:若將練習2中m、n改為ac、bf分點且am = fn,試問結(jié)論仍成立嗎?試證之。
(設(shè)計意圖:設(shè)計這組練習,目的是為了鞏固與深化定理的運用,特別是通過練習2及其變式的訓練,讓學生能在復(fù)雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達到逐步培養(yǎng)空間感與邏輯思維能力。)
(四)總結(jié)
先由學生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。
2、定理的符號表示:ba||? a||b??簡述:(內(nèi)外)線線平行則線面平行
3、定理運用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質(zhì)等。
七、教學反思
本節(jié)“直線與平面平行的判定”是學生學習空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學生開始學習立幾演澤推理論述的思維方式方法,因此本節(jié)課學習對發(fā)展學生的空間觀念和邏輯思維能力是非常重要的。
本節(jié)課的設(shè)計遵循“直觀感知——操作確認——思辯論證”的認識過程,注重引導學生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認識直線和平面平行的判定方法,讓學生通過自主探索、合作交流,進一步認識和掌握空間圖形的性質(zhì),積累數(shù)學活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。
本節(jié)課的設(shè)計注重訓練學生準確表達數(shù)學符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復(fù)習引入,讓學生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導學生三種語言的表達。
本節(jié)課對定理的探求與認識過程的設(shè)計始終貫徹直觀在先,感知在先,學自己身邊的數(shù)學,感知生活中包涵的數(shù)學現(xiàn)象與數(shù)學原理,體驗數(shù)學即生活的道理,比如讓學生舉生活中能感知線面平行的例子,學生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學生從中抽象概括出定理。
高中數(shù)學書教學設(shè)計模板篇3
教材分析
圓是學生在初中已初步了解了圓的知識及前面學習了直線方程的基礎(chǔ)上來進一步學習《圓的標準方程》,它既是前面圓的知識的復(fù)習延伸,又是后繼學習圓與直線的位置關(guān)系奠定了基礎(chǔ)。因此,本節(jié)課在本章中起著承上啟下的重要作用。
教學目標
1、知識與技能:探索并掌握圓的標準方程,能根據(jù)方程寫出圓的坐標和圓的半徑。
2、過程與方法:通過圓的標準方程的學習,掌握求曲線方程的方法,領(lǐng)會數(shù)形結(jié)合的思想。
3、情感態(tài)度與價值觀:激發(fā)學生學習數(shù)學的興趣,感受學習成功的喜悅。
教學重點難點
以及措施
教學重點:圓的標準方程理解及運用
教學難點:根據(jù)不同條件,利用待定系數(shù)求圓的標準方程。
根據(jù)教學內(nèi)容的特點及高一年級學生的年齡、認知特征,緊緊抓住課堂知識的結(jié)構(gòu)關(guān)系,遵循“直觀認知――操作體會――感悟知識特征――應(yīng)用知識”的認知過程,設(shè)計出包括:觀察、操作、思考、交流等內(nèi)容的教學流程。并且充分利用現(xiàn)代化信息技術(shù)的教學手段提高教學效率。以此使學生獲取知識,給學生獨立操作、合作交流的機會。學法上注重讓學生參與方程的推導過程,努力拓展學生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學生真正體驗知識的形成過程。
學習者分析
高一年級的學生從知識層面上已經(jīng)掌握了圓的相關(guān)性質(zhì);從能力層面具備了一定的觀察、分析和數(shù)據(jù)處理能力,對數(shù)學問題有自己個人的看法;從情感層面上學生思維活躍積極性高,但他們數(shù)學應(yīng)用意識和語言表達的能力還有待加強。
教法設(shè)計
問題情境引入法啟發(fā)式教學法講授法
學法指導
自主學習法討論交流法練習鞏固法
教學準備
ppt課件導學案
教學環(huán)節(jié)
教學內(nèi)容
教師活動
學生活動
設(shè)計意圖
情景引入
回顧復(fù)習
(2分鐘)
1、觀賞生活中有關(guān)圓的圖片
2、回顧復(fù)習圓的定義,并觀看圓的生成flas_。
提問:直線可以用一個方程表示,那么圓可以用一個方程表示嗎?
教師創(chuàng)設(shè)情景,引領(lǐng)學生感受圓。
教師提出問題。引導學生思考,引出本節(jié)主旨。
學生觀賞圓的圖片和動畫,思考如何表示圓的方程。
生活中的圖片展示,調(diào)動學生學習的積極性,讓學生體會到園在日常生活中的廣泛應(yīng)用
自主學習
(5分鐘)
1、介紹動點軌跡方程的求解步驟:
(1)建系:在圖形中建立適當?shù)淖鴺讼担?/p>
(2)設(shè)點:用有序?qū)崝?shù)對(x,y)表示曲線上任意一點m的坐標;
(3)列式:用坐標表示條件p(m)的方程;
(4)化簡:對p(m)方程化簡到最簡形式;
2、學生自主學習圓的方程推導,并完成相應(yīng)學案內(nèi)容,
教師介紹求軌跡方程的步驟后,引導學生自學圓的標準方程
自主學習課本中圓的標準方程的推導過程,并完成導學案的內(nèi)容,并當堂展示。
培養(yǎng)學生自主學習,獲取知識的能力
合作探究(10分鐘)
1、根據(jù)圓的標準方程說明確定圓的方程的條件有哪些?
2、點m(x0,y0)與圓(x-a)2+(y-b)2=r2的關(guān)系的判斷方法:
(1)點在圓上
(2)點在圓外
(3)點在圓內(nèi)
教師引導學生分組探討,從旁巡視指導學生在自學和探討中遇到的問題,并鼓勵學生以小組為單位展示探究成果。
學生展開合作性的探討,并陳述自己的研究成果。
通過合作探究和自我的展示,鼓勵學生合作學習的品質(zhì)
當堂訓練(18分鐘)
1、求下列圓的圓心坐標和半徑
c1:x2+y2=5
c2:(x-3)2+y2=4
c3:x2+(y+1)2=a2(a≠0)
2、以c(4,-6)為圓心,半徑等于3的圓的標準方程
3、設(shè)圓(x-a)2+(y-b)2=r2
則坐標原點的位置是()
a.在圓外b.在圓上
c.在圓內(nèi)d.與a的取值有關(guān)
4、寫出下列各圓的標準方程(1)圓心在原點,半徑等于5
(2)經(jīng)過點p(5,1),圓心在點c(6,-2);
(3)以a(2,5),b(0,-1)為直徑的圓。
5、下列方程分別表示什么圖形
(1)x2+y2=0
(2)(x-1)2=8-(y+2)2
(3)《圓的標準方程》教學設(shè)計-賈偉
6、鞏固提升:已知圓心為c的圓經(jīng)過點a(1,1)和b(2,-2),且圓心在直線l:x-y+1=0上,求圓c的標準方程并作圖
指導學生就不同條件下給出的圓心和半徑關(guān)系,求解圓的標準方程這兩個要素展開訓練。
學生自主開展訓練,并糾正學習中所遇到的問題
鞏固所學知識,并查缺補漏。
回顧小結(jié)
(1分鐘)
1、你學到了哪些知識?
2、你掌握了哪些技能?
3、你體會到了哪些數(shù)學思想?
采用提問的形式幫助學生回顧和分析本節(jié)所學。
學生思考并從知識、技能和思想方法上回顧總結(jié)。
培養(yǎng)學生歸納總結(jié)能力
作業(yè)布置
(1分鐘)
課本87頁習題2-2
a組的第1道題
布置訓練任務(wù)
標記并完成相應(yīng)的任務(wù)
檢測學生掌握知識情況。
教學反思
本節(jié)教學主要遵循“回-導-學-展-講-練-結(jié)”的高效課堂教學模式,遵循學生學習的主體地位,鼓勵學生自主思考和探討。
教學中要積極鼓勵學生多思考總結(jié),在判斷點與圓的位置關(guān)系中,要遵從學生個性化的發(fā)展思路,鼓勵學生創(chuàng)造性的解決問題。
高中數(shù)學書教學設(shè)計模板篇4
新學期已開始,為使新學期的工作有條不紊的進行,使教學工作更加科學合理,使學生對知識的接收更加得心應(yīng)手,特訂新學期個人教學計劃如下
一、指導思想
加強現(xiàn)代教育理論的學習,提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導,以培養(yǎng)學生的創(chuàng)新精神和實踐能力為重點,深化課堂教學改革,大力推進素質(zhì)教育。
二、教材分析
本冊教材具有以下幾個明顯的特點:
1、為學生的數(shù)學學習構(gòu)筑起點
教科書提供了大量數(shù)學活動的線索,作為所有學生從事數(shù)學學習的出發(fā)點。目的是使學生能夠在所提供的學習情景中,通過探索與交流等活動,獲得必要的發(fā)展。
2、向?qū)W生提供現(xiàn)實,有趣,富有挑戰(zhàn)性的學習素材
教科書從學生實際出發(fā),用他們熟悉或感興趣的問題情景引入學習主題,并提供了眾多有趣而富有數(shù)學含義的問題,以展開數(shù)學探究。
3、為學生提供探索,交流的時間與空間
教科書依據(jù)學生已有的知識背景和活動經(jīng)驗,提供了大量的操作,思考與交流的機會,幫助學生通過思考與交流,梳理所學的知識,建立符合個體認知特點的知識結(jié)構(gòu)。
4、展現(xiàn)數(shù)學知識的形成與應(yīng)用過程
教科書采用"問題情境—建立模型—解釋,應(yīng)用與拓展"的模式展開,有利于學生更好地理解數(shù)學,應(yīng)用數(shù)學,增強學好數(shù)學的信心。
5、滿足不同學生的發(fā)展需求
教科書中"讀一讀"給學生以更多了解數(shù)學,研究數(shù)學的機會。教科書中的習題分為兩類:一類面向全體學生;另一類面向有更多數(shù)學需求的學生。
三、教材的重點和難點
本冊教材從內(nèi)容上看,教學重點是三角形和四邊形的性質(zhì)定理
和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學難點是對反
比例函數(shù)的理解及應(yīng)用;用試驗或模擬試驗的方法估計一些復(fù)
雜的隨機時間發(fā)生的概率。
四、教學措施:
1、根據(jù)學生實際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學資源,為學生提供豐富多彩的學習素材。
2、加強直觀教學,充分利用教具,學具等多媒體教學,以豐富學生感知認識對象的途徑,促使他們更加樂意接近數(shù)學,更好地理解數(shù)學。
3、關(guān)注學生的個體差異,有效的實施有差異的教學,使每個學生都能得到充分的發(fā)展。
4、加強學生學習習慣的培養(yǎng),主要培養(yǎng)學生的書寫,認真分析問題的習慣。同時注意學習態(tài)度的培養(yǎng)。
五、時間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函數(shù)
6月1日——6月10日頻率與概率
6月11日——7月11日復(fù)習考試
高中數(shù)學書教學設(shè)計模板篇5
高中數(shù)學教學設(shè)計——函數(shù)的奇偶性
函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對函數(shù)概念的深化。它把自變量取相反數(shù)時函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于坐標原點成中心對稱。這樣,就從數(shù)、形兩個角度對函數(shù)的奇偶性進行了定量和定性的分析。教材首先通過對具體函數(shù)的圖像及函數(shù)值對應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準確定義。然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實例。最后,為加強前后聯(lián)系,從各個角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系。這節(jié)課的重點是函數(shù)奇偶性的定義,難點是根據(jù)定義判斷函數(shù)的奇偶性。 教學目標
1、通過具體函數(shù),讓學生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學概念的建立過程,培養(yǎng)其抽象的概括能力。
2、理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性。
3、在經(jīng)歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數(shù)學既是抽象的又是具體的。 任務(wù)分析
這節(jié)內(nèi)容學生在初中雖沒學過,但已經(jīng)學習過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學生理解。在引入概念時始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆。對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈r.在此基礎(chǔ)上,讓學生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù)。關(guān)于單調(diào)性與奇偶性關(guān)系,引導學生拓展延伸,可以取得理想效果。 教學設(shè)計
一、問題情景
1、觀察如下兩圖,思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的? 可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱。從函數(shù)值對應(yīng)表可以看到,當自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同。
對于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事實上,對于r內(nèi)任意的一個x,都有f(-x)=(-x)2=x2=f(x)。此時,稱函數(shù)y=x2為偶函數(shù)。
2、觀察函數(shù)f(x)=x和f(x)= 的圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征。
22可以看到兩個函數(shù)的圖像都關(guān)于原點對稱。函數(shù)圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈r都有f(-x)=-f(x)。此時,稱函數(shù)y=f(x)為奇函數(shù)。
二、建立模型
由上面的分析討論引導學生建立奇函數(shù)、偶函數(shù)的定義 1.奇、偶函數(shù)的定義
如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù)。如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù)。
2、提出問題,組織學生討論
(1)如果定義在r上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))
(2)奇、偶函數(shù)的圖像有什么特征?
(奇、偶函數(shù)的圖像分別關(guān)于原點、y軸對稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點對稱)
三、解釋應(yīng)用 [例 題]
1、判斷下列函數(shù)的奇偶性。
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1]。
2、已知:定義在r上的函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),求f(x)的表達式。
解:(1)任取x0,∴f(-x)=-x(1-x),
而f(x)是奇函數(shù),∴f(-x)=-f(x)?!鄁(x)=x(1-x)。
(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3、已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論。
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:
任取x1>x2>0,則-x1
∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2)。 又f(x)是偶函數(shù),∴f(x1)>f(x2)。
∴f(x)在(0,+∞)上是增函數(shù)。
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?
[練 習]
1、已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何。
2.f(x)=-x3|x|的大致圖像可能是(
)
3、函數(shù)f(x)=ax2+bx+c,(a,b,c∈r),當a,b,c滿足什么條件時,(1)函數(shù)f(x)是偶函數(shù)。(2)函數(shù)f(x)是奇函數(shù)。 4.設(shè)f(x),g(x)分別是r上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。
四、拓展延伸
1、有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個? 2.設(shè)f(x),g(x)分別是r上的奇函數(shù),偶函數(shù),試研究: (1)f(x)=f(x)·g(x)的奇偶性。 (2)g(x)=|f(x)|+g(x)的奇偶性。
3、已知a∈r,f(x)=a- ,試確定a的值,使f(x)是奇函數(shù)。
4、一個定義在r上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
高中數(shù)學書教學設(shè)計模板篇6
[學習目標]
(1)會用坐標法及距離公式證明cα+β;
(2)會用替代法、誘導公式、同角三角函數(shù)關(guān)系式,由cα+β推導cα—β、sα±β、tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎(chǔ),而誘導公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用