寫好相關(guān)的教學(xué)設(shè)計可以不斷提升我們的教學(xué)質(zhì)量,在動筆寫教學(xué)設(shè)計前,老師們需要結(jié)合以往的教學(xué)經(jīng)驗寫作,下面是范文社小編為您分享的倍數(shù)與因數(shù)教學(xué)設(shè)計8篇,感謝您的參閱。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇1
教學(xué)內(nèi)容:因數(shù)與倍數(shù)(p12-13例1及p15題1、2)
教學(xué)目標:
1、從操作活動中理解因數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)。
2、培養(yǎng)學(xué)生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點。
3、培養(yǎng)學(xué)生的合作意識、探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
教學(xué)重點:理解因數(shù)的意義
教學(xué)難點:能熟練地找一個數(shù)的因數(shù)。
教具準備:多媒體課件
教學(xué)過程:
一、引入新課:
1、課件出示主題圖,讓學(xué)生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?你還能找出12的其他因數(shù)嗎?
(指名生說一說)
4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(板書課題:因數(shù)和倍數(shù))
齊讀教材第12的注意。
二、自學(xué)預(yù)設(shè):
1、仔細看例一,什么叫因數(shù)和倍數(shù)?像這樣的乘除法算式中的三個數(shù)之間還有另一種說法,你想知道嗎?
2、怎樣找因數(shù)?例如18,36的因數(shù)是什么?
3、因數(shù)有什么特點?一個數(shù)的最小因數(shù)是多少?有幾個因數(shù)?(舉例說明)
嘗試練習(xí)
試著完成p13的做一做練習(xí)
三、認識因數(shù)與倍數(shù),展示交流
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
師:從12的因數(shù)可以看出:一個數(shù)的因數(shù)還不止一個,那我們一起找找看18的因數(shù)有哪些?
學(xué)生嘗試完成匯報:(18的因數(shù)有: 1,2,3,6,9,18)
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示。課件出示
5、小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二).我的質(zhì)疑
1.誰能舉一個算式例子,并說說誰是誰的因數(shù)?
2.討論:0×3 0×10 0÷3 0÷10
提問:通過剛才的計算,你有什么發(fā)現(xiàn)?
3.注意:(1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)一般指的是整數(shù),但不包括0。(2)這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說的因數(shù)不是以前乘法算式名稱的“因數(shù)”,兩者不能搞混淆。
四、反饋檢測
1.下面每一組數(shù)中,誰是誰得因數(shù)?
16和2 4和24 72和8 20和5
2.下面得說法對嗎?說出理由。
(1)48是6的倍數(shù)
(2)在13÷4=3……1中,13是4的倍數(shù)
(3)因為3×6=18,所以18是倍數(shù),3和6是因數(shù)。
3、完成p15第2題
學(xué)生自己獨立完成,講評時讓學(xué)生說一說,是怎么想的?
五、課堂小結(jié):
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
板書設(shè)計: 因數(shù)和倍數(shù)
18的因數(shù)有: 1,2,3,6,9,18
一個數(shù)的因數(shù)::最小的是1,最大的是它本身。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇2
教學(xué)內(nèi)容:
小學(xué)數(shù)學(xué)第十冊教材12-13
教學(xué)目標:
1 讓學(xué)生理解倍數(shù)和因數(shù)的意義,掌握找一個非零自然數(shù)的倍數(shù)與因數(shù)的方法,發(fā)現(xiàn)一個非零自然數(shù)的倍數(shù)和因數(shù)中最大的數(shù)、最小的數(shù)以及一個非零自然數(shù)的倍數(shù)與因數(shù)個數(shù)的特征。
2 讓學(xué)生初步意識到可以從一個新的角度,即倍數(shù)和因數(shù)的角度來研究非零自然數(shù)的特征及其相互關(guān)系,培養(yǎng)學(xué)生觀察、分析與抽象概括的能力,體會數(shù)學(xué)學(xué)習(xí)的奇妙,對數(shù)學(xué)產(chǎn)生好奇心。
教學(xué)重點:理解倍數(shù)和因數(shù)的意義。
教學(xué)難點:從倍數(shù)和因數(shù)的意義出發(fā),尋找一個非零自然數(shù)的倍數(shù)與因數(shù)。
教學(xué)過程:
一、直接導(dǎo)入
師:自然數(shù)是我們在數(shù)的王國中認識的第一種數(shù),今天我們將從一個特定的角度,即倍數(shù)和因數(shù)的角度來研究自然數(shù)的特征及其相互關(guān)系。(板書課題:倍數(shù)和因數(shù))
[評析:課始直接進入主題,揭示本節(jié)課新知識研究的方向,使學(xué)生產(chǎn)生探究新知的心理需求。]
二、教學(xué)倍數(shù)和因數(shù)的意義
(屏幕出示12個完全相同的正方形)
師:用這12個完全相同的正方形,能拼出一個長方形嗎?(生:能)你能用一道乘法算式,表示你拼出的長方形嗎?
生:我可以拼出一個3×4的長方形。
師:你們猜猜看,這會是一個什么樣的長方形?
生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學(xué)生所猜的長方形,并讓學(xué)生明白這兩種拼法其實是相同的)
生:我還可以拼出一個2×6的長方形。
生:我還可以拼出一個1×12的長方形。(師問法同上,略)
師:同學(xué)們可別小看這三道算式,今天我們學(xué)習(xí)的內(nèi)容,就將從研究這三道乘法算式拉開帷幕。
[評折:準確把握學(xué)生的學(xué)習(xí)起點,讓學(xué)生根據(jù)所列乘法算式猜想可能拼成的長方形,大屏幕隨之展示學(xué)生猜想的長方形,更加激起學(xué)生的求知欲。]
師:根據(jù)3×4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
師:同學(xué)們一起來讀一讀,感受一下。
師:你讀懂了些什么?(引導(dǎo)學(xué)生感知什么是倍數(shù)、什么是因數(shù),即倍數(shù)和因數(shù)的意義;明白在乘法算式中,積就是兩個乘數(shù)的倍數(shù),兩個乘數(shù)就是積的因數(shù))
師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。
師(出示18÷3=6):誰是誰的倍數(shù)?誰是誰的因數(shù)?為什么?
生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數(shù),3和6是18的因數(shù)。(引導(dǎo)學(xué)生明白根據(jù)乘除法的互逆關(guān)系,在除法算式中也可以說誰是誰的倍數(shù)、誰是誰的因數(shù))
屏幕出示:4是因數(shù),24是倍數(shù)。
師:這句話對嗎?(讓學(xué)生理解倍數(shù)和因數(shù)是兩個數(shù)之間的相互依存關(guān)系,必須說誰是誰的倍數(shù)、誰是誰的因數(shù))
師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學(xué)一定發(fā)現(xiàn)在這三道乘法算式中。我們其實已經(jīng)找到了12的所有因數(shù),你知道都有哪些嗎?(引導(dǎo)學(xué)生說一說)
屏幕出示一組數(shù):36、4、9、0、5、2。
師:請你從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關(guān)系來說一說。(生可能會選36和4、36和9、4和2這幾組數(shù))
設(shè)疑:
(1)為什么不選0呢?(讓學(xué)生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))(屏幕演示將“0”去掉)
(2)為什么不選5呢?(例如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))(屏幕演示將“5”去掉)
(3)去掉了0和5,剩下的這些數(shù)和36有什么關(guān)系呢?(它們都是36的因數(shù),或36是它們的倍數(shù);當(dāng)然,36也是36的因數(shù),36也是36的倍數(shù))
[評析:倍數(shù)和因數(shù)意義的學(xué)習(xí)層次分明。(1)猜想:由1 2個完全相同的正方形拼成一個長方形的不同拼法,得出三道乘法算式。根據(jù)3×4=12這道算式中三個數(shù)的關(guān)系,讓學(xué)生初次感知倍數(shù)和因數(shù)的意義。(2)拓展:根據(jù)除法算式中“存在一個自然數(shù)等于兩個自然數(shù)乘積”這一條件,揭示除法算式中依然存在著倍數(shù)和因數(shù)的關(guān)系,拓展了對倍數(shù)與因數(shù)意義的理解。(3)深化:探索并感知倍數(shù)和因數(shù)的相互依存關(guān)系?!皬囊唤M數(shù)中任選兩個數(shù)”說意義的訓(xùn)練,鞏固與深化了對倍數(shù)和因數(shù)意義的理解。]
三、探討找一個數(shù)的因數(shù)的方法
1 師:在剛才這組數(shù)(36、4、9、0、5、2)中,2、4、9和36都是36的因數(shù)。除了這些,36的因數(shù)還有嗎?(生一個一個地舉例)這樣一個一個雜亂無序地找,你們覺得這種方法好嗎?(生:不好!)不好在哪兒呢?
生:容易漏掉或重復(fù)。
師:你們有沒有什么好辦法,能一個不落地將36的所有因數(shù)都找到呢?同學(xué)們可以獨立完成這個任務(wù),也可以同桌的兩位同學(xué)合作完成。如果你全部找到了,就請將36的所有因數(shù)寫在練習(xí)紙上。同時將你找因數(shù)的方法寫在橫線的下方。(教師巡視,學(xué)生討論交流)
展示學(xué)生的作品,學(xué)生可能出現(xiàn)的答案有:
(1)根據(jù)1×36=36、2×18=36……分別得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù);
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù)。
在寫法上,可能出現(xiàn)的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序?qū)?,?、2、3、4、6、9、12、18、36。然后引導(dǎo)學(xué)生比較這兩種寫法的不同。將方法優(yōu)化:運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且不重復(fù)、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)
2 探討一個數(shù)的因數(shù)的特征。
課件出示12的因數(shù)、15的因數(shù)和36的因數(shù)。(從小到大排列)
學(xué)生觀察、討論下面的問題(課件出示問題):一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?
課件出示描述一個非零自然數(shù)的因數(shù)的特征的表格(如下),學(xué)生討論、交流后再反饋。
師(小結(jié)):一個非零自然數(shù)的最大因數(shù)是它本身,最小因數(shù)是1,因數(shù)的個數(shù)是有限的。
[評析:找一個數(shù)的因數(shù)是本節(jié)課的教學(xué)難點。教學(xué)中,教師調(diào)整教材的編排順序,先學(xué)習(xí)找一個數(shù)的因,數(shù),通過置疑“一個個地找36的因數(shù),這種方法好嗎?不好在哪”,啟發(fā)學(xué)生根據(jù)因數(shù)的意義和乘除法的互逆關(guān)系,有序地找出36的所有因數(shù),并及時優(yōu)化方法。同時,引導(dǎo)學(xué)生自主探索,在觀察中發(fā)現(xiàn)一個數(shù)的因數(shù)的有關(guān)特征,最后進行總結(jié),培養(yǎng)了學(xué)生解決問題的能力。]
四、探討找一個數(shù)的倍數(shù)的方法
1 師:我們已經(jīng)掌握了如何有序地、完整地找出一個非零自然數(shù)的所有因數(shù)的方法。如果讓你找出一個數(shù)的所有倍數(shù),你會找嗎?(生:會)那么,我們就一起來找找3的倍數(shù)。(學(xué)生試著找出3的倍數(shù),教師巡視,對有困難的學(xué)生給予幫助)
2 師:你是怎樣有序地、完整地找出3的倍數(shù)的?
生:用3分別乘1、2、3……得出3的倍數(shù)。
生:用3依次地加3得到3的倍數(shù)。
師:你認為哪種方法能更迅速地找出3的倍數(shù)?(學(xué)生討論交流)
師:3的倍數(shù)能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數(shù)的個數(shù)呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)
3 寫出30以內(nèi)5的倍數(shù)。(做在練習(xí)紙上)
4 課件出示3的倍數(shù)、4的倍數(shù)、5的倍數(shù),讓學(xué)生從最大倍數(shù)、最小倍數(shù)、倍數(shù)的個數(shù)三個方面去描述一個數(shù)的倍數(shù)的特征(見下表)。
師(小結(jié)):一個非零自然數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),所以倍數(shù)的個數(shù)是無限的。
[評析:借助學(xué)習(xí)一個數(shù)的因數(shù)的方法,以此為基礎(chǔ),讓學(xué)生自主探索找一個數(shù)的倍數(shù)的方法。在探索交流中,優(yōu)化尋找一個數(shù)的倍數(shù)的方法,獲得一個數(shù)的倍數(shù)的特征。]
五、組織游戲,深化認識
師:這節(jié)課,我們通過三道乘法算式與倍數(shù)和因數(shù)進行了兩次的親密接觸。第一次的接觸,讓我們了解了倍數(shù)與因數(shù)的意義;第二次的接觸,通過找一個數(shù)的倍數(shù)和因數(shù),我們了解了一個數(shù)的倍數(shù)和因數(shù)的特征。通過這兩次的親密接觸,相信 同學(xué)們對于今天所學(xué)的知識,已經(jīng)有了比較深刻的理解。下面,就讓我們輕松片刻。一起來玩一個特別好玩的游戲,感興趣嗎?
游戲——請到我家來做客
(每位學(xué)生的手中,都有一張寫有該名學(xué)生的學(xué)號卡片)
課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
(1)屏幕上出現(xiàn)了可愛的小狗向同學(xué)們走來(配音):24的因數(shù)是我的朋友。如果你卡片上的數(shù)是24的因數(shù),歡迎你,我的朋友!(卡片上的數(shù)若符合要求,就請這位學(xué)生站起來)
(2)屏幕上出現(xiàn)了笨笨的小豬向同學(xué)們揮手(配音):我邀請的朋友是5的倍數(shù),喜歡我,就快快來吧!
(3)瞧!可愛的小貓咪也來了。(屏幕上出現(xiàn)了俏皮、可愛的小貓咪)配音:如果你卡片上的數(shù)是1的倍數(shù),請來我家做客吧!
(每位學(xué)生卡片上的數(shù)都符合要求,所以全班學(xué)生都站了起來)
師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數(shù),好嗎?(生答略)
師:是不是所有的自然數(shù)都可以呢?
生:除了0。
屏幕出示:所有非零自然數(shù)都是1的倍數(shù)。
(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數(shù)的因數(shù)。這個數(shù)是幾呢?(生討論交流)
屏幕出示:只有1才符合要求,因為1是所有非零自然數(shù)的因數(shù)。
六、挑戰(zhàn)自我,拓展升華
師:雖然我們只合作了這短短的三十分鐘,但老師已經(jīng)深深感到我們這個班的同學(xué)非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰(zhàn)性的節(jié)目想考考大家,你們敢不敢接受挑戰(zhàn)?(生:敢!)
挑戰(zhàn)——你猜、我猜、大家猜i(屏幕演示動畫標題)
規(guī)則:下面每組數(shù),去掉一個數(shù),剩下的數(shù)便是其中一個數(shù)的倍數(shù)或因數(shù)。你能找出這個數(shù)嗎?
(1)20、5、4、3。
答案:去掉3(屏幕演示隱去“3”),剩下的數(shù)是20的因數(shù),或20是它們的倍數(shù)。
(2)4、12、18、3。
答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數(shù)便是12的因數(shù),或12是它們的倍數(shù);二是去掉4(屏幕演示隱去“4”),剩下的數(shù)便是3的倍數(shù)。
[評析:設(shè)計游戲環(huán)節(jié),對整節(jié)課的知識點進行總結(jié)深化,并引導(dǎo)每位學(xué)生參與其中,積極主動地思考本節(jié)課所學(xué)的知識,教學(xué)過程真實、有效。]
七、全課總結(jié)
師:通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?你們學(xué)得開心嗎?玩得開心嗎?其實。數(shù)學(xué)就是這么簡單而有趣,讓我們每天都樂在其中!
總評:
本節(jié)課的教學(xué)特色是嚴謹靈活、細膩奔放。在“因數(shù)和倍數(shù)”概念的學(xué)習(xí)過程中,重視師生情感的交流,注重每個學(xué)生的發(fā)展,較好地體現(xiàn)了“教師有效引導(dǎo)下學(xué)生自主探索”這一教學(xué)策略。
1 意義教學(xué)引導(dǎo)學(xué)生自主構(gòu)建。
在多次的實踐教學(xué)中,發(fā)現(xiàn)用12個完全相同的小正方形拼出一個長方形。對于四年級的學(xué)生來說非常容易。教材這樣安排的目的,在于幫助學(xué)生有意識地感受1和12、2和5、3和4這幾組數(shù)之間的有機聯(lián)系。
本課中,倍數(shù)和因數(shù)的意義教學(xué)分三個層次:
1 借助三個問題讓學(xué)生通過想像及大屏幕的直觀演示,引導(dǎo)學(xué)生得出三道乘法算式,同時介紹倍數(shù)和因數(shù)的含義。
2 通過除法算式找因倍關(guān)系。
3 滲透倍數(shù)和因數(shù)的相互依存性。
2 合理組織教材,將找一個數(shù)的因數(shù)及其特征教學(xué)提前。
尋找一個數(shù)的因數(shù)是本節(jié)課的教學(xué)難點,學(xué)生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
教學(xué)中,教師出示一組數(shù),如36、4、9、0、5、2,讓學(xué)生從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關(guān)系來說一說。
最后設(shè)疑:
(1)為什么不選o呢?(讓學(xué)生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))
(2)為什么不選5呢?(如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))
(3)去掉了0和5,剩下的這些數(shù)和36有什么關(guān)系呢?(它們都是36的因數(shù),或36是它們的倍數(shù))
這樣的改變,既達到預(yù)定目的,又為學(xué)習(xí)找因數(shù)做了鋪墊,引發(fā)了學(xué)生尋找36的因數(shù)的濃厚興趣。在引導(dǎo)學(xué)生自主探索一個數(shù)的因數(shù)的特征時,教師讓學(xué)生帶著問題去觀察討論:每一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?以上安排,降低了學(xué)生的學(xué)習(xí)難度。
3 尋找一個數(shù)的因數(shù)和倍數(shù)的方法讓學(xué)生自己生成。
在尋找一個數(shù)的因數(shù)和倍數(shù)的過程中。教師將學(xué)生推向發(fā)現(xiàn)與探索的前臺。
尋找一個數(shù)的倍數(shù)和因數(shù)。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導(dǎo)學(xué)生進行溝通,尋找它們的共同點和聯(lián)系,進而比較各種方法之間的優(yōu)劣,遴選最優(yōu)方法,提升思維效率。
4 增強游戲中數(shù)學(xué)思維的含量。
知識在游戲中深化,在挑戰(zhàn)中升華。
本節(jié)課以“有效引導(dǎo)下自主探索”為教學(xué)策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學(xué),將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發(fā)現(xiàn)、共同分享,引領(lǐng)學(xué)生經(jīng)歷“研究與發(fā)現(xiàn)”的真實過程。課尾游戲的運用,激發(fā)了學(xué)生的學(xué)習(xí)熱情,讓學(xué)生以愉快的心情和良好的體驗融入學(xué)習(xí)活動中,培養(yǎng)了學(xué)生用數(shù)學(xué)眼光看待游戲的意識,大大降低了學(xué)生對數(shù)學(xué)概念學(xué)習(xí)的枯燥體驗。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇3
【教學(xué)內(nèi)容】
人教版數(shù)學(xué)五年級下冊p12一14,練習(xí)二。
【教學(xué)過程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學(xué)生動手操作,并與同桌交流擺法。
3.請用算式表達你的擺法。
匯報:1×12=12,2×6=12,3×4=12。
?評析】通過讓學(xué)生動手操作、想象、表達等環(huán)節(jié),既為新知探索提供材料,又孕育求一個數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1.理解因數(shù)和倍數(shù)。
(1)觀察3×4=12,你能從數(shù)學(xué)的角度說說它們之間的關(guān)系嗎? 師根據(jù)學(xué)生的表達完成以下板書: 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)
(2)用因數(shù)和倍數(shù)說說算式1×12=12,2×6=12的關(guān)系。
(3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括o)。
2.求一個數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。 學(xué)生匯報。
師:2和12是36的因數(shù),找1個、2個不難,難就難在把36所有的因數(shù)全部找出來,請同學(xué)們找出36的所有因數(shù)。
出示要求:
①可獨立完成,也可同桌合作。
②可借助剛才找出12的所有因數(shù)的方法。
③寫出36的所有因數(shù)。
④想一想,怎樣找才能保證既不重復(fù),又不遺漏。 教師巡視,展示學(xué)生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復(fù)又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)
師:有序思考更能準確找出一個數(shù)的所有因數(shù)。 完成板書:描述式、集合式。
(3)30的因數(shù)有哪些?
?評析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點。
3.求一個數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣
有序地找,有多少個?
找一個數(shù)的倍數(shù),用1,2,3,4?分別乘這個數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內(nèi)6的倍數(shù)有:一o
?評析】
由于有了有序思考的基礎(chǔ),求一個數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4.發(fā)現(xiàn)規(guī)律。
觀察上面幾個數(shù)的因數(shù)和倍數(shù)的例子,你對它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學(xué)生匯報,歸納:一個數(shù)的最小因數(shù)是i,最大因數(shù)是它本身;一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。
?評析】
通過觀察板書上幾個數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。 三、歸納空間,內(nèi)化新知。
師生共同總結(jié):
(1)因數(shù)和倍數(shù)是相互的,不能單獨存在。
(2)找一個數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。
四、拓展空間,應(yīng)用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2.判斷。
(1)6是因數(shù),24是倍數(shù)。( )
(2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )
(3)1是1,2,3,4?的因數(shù)。 ( )
(4)一個數(shù)的最小倍數(shù)是21,這個數(shù)的因數(shù)有1,5,25。( )
3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識說一句話。
4、舉座位號起立游戲。
(1)5的倍數(shù)。
(2)48的因數(shù)。
(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說一句話讓還坐著的同學(xué)全部起立。
【評析】
本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個性思維,體現(xiàn)了知識的應(yīng)用價值。
【反思】
本課教學(xué)設(shè)計重在讓學(xué)生通過自主探索,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法,體驗有序思考的重要性。體現(xiàn)了以下兩個特點: 一、留足空間,讓探索有質(zhì)量。
留足思維空間,才能充分調(diào)動多種感官參與學(xué)習(xí),充分發(fā)揮知識經(jīng)驗和生活經(jīng)驗,使探索成為知識不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機圖改為拼長方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個長方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個同學(xué)找出36的所有因數(shù),由于個人經(jīng)驗和思
維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。 二、適度引導(dǎo),讓探索有方向。
引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠。探索12塊完全一樣的正方形拼成一個長方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。
在找36的所有因數(shù)時,教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個數(shù)的因數(shù)和倍數(shù)時,引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察??梢?,適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。
整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個認知過程是體驗不斷豐富、概念不斷形成、知識不斷建構(gòu)的過程。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇4
教學(xué)內(nèi)容:
北師大版數(shù)學(xué)實驗教材五年級上冊第一單元“倍數(shù)和因數(shù)”第三課時。
教學(xué)目標:
1、經(jīng)歷探索3的倍數(shù)的特征的過程,理解3的倍數(shù)特征,能判斷一個數(shù)是不是3的倍數(shù)。
2、培養(yǎng)學(xué)生分析、比較、猜想、驗證的能力,提高學(xué)生的合情推理能力。
教材分析:
1、單元內(nèi)容簡介:
本單元是在學(xué)生學(xué)過整數(shù)的認識,整數(shù)的四則計算,小數(shù)、分數(shù)、負數(shù)的認識等知識的基礎(chǔ)上展開學(xué)習(xí)的。本單元的學(xué)習(xí)內(nèi)容主要包括認識自然數(shù)和整數(shù),倍數(shù)與因數(shù),找倍數(shù);2、5、3倍數(shù)的特征;找因數(shù);質(zhì)數(shù)與合數(shù),奇數(shù)與偶數(shù)等知識,使知識進一步系統(tǒng)化。這些知識的學(xué)習(xí)是以后學(xué)習(xí)公倍數(shù)與公因數(shù)、約分、通分、分數(shù)四則計算等知識的重要基礎(chǔ)。
本單元的知識屬于“數(shù)論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯(lián)系又很緊密,部分學(xué)生學(xué)習(xí)時會有一定的困難。教材明確規(guī)定在研究倍數(shù)與因數(shù)時,限制在不是零的自然數(shù)范圍內(nèi)研究,避免由此而帶來的一些小學(xué)生尚不必研究的問題。
2、本節(jié)課內(nèi)容簡介:
教材把課題確定為“探索活動(二)”,主要目的是要讓學(xué)生經(jīng)歷探索知識的過程。教材首先提出“我們研究了2、5倍數(shù)的特征,那么3的倍數(shù)有什么特征呢?”的問題,目的是引導(dǎo)學(xué)生思考和探索3的倍數(shù)的特征。教學(xué)時,可以借助這個問題引導(dǎo)學(xué)生提出猜想。在探索3的倍數(shù)特征時,教材利用100以內(nèi)的數(shù)表來研究,先讓學(xué)生找出3的倍數(shù),再觀察特征,說說有什么發(fā)現(xiàn),學(xué)生可能受知識遷移的影響去研究個位上的數(shù)與十位上的數(shù),但都無法發(fā)現(xiàn)規(guī)律。適當(dāng)?shù)臅r候,教師可以作一定的提示:“將3的倍數(shù)每個數(shù)的各個數(shù)字加起來觀察呢?”以幫助學(xué)生逐步發(fā)現(xiàn)規(guī)律。在初步得出結(jié)論的基礎(chǔ)上,教師應(yīng)進一步提出:“這個規(guī)律對三位數(shù)是否成立?”的問題,促使學(xué)生能自己找?guī)讉€三位數(shù)來驗證規(guī)律。需要注意的是在日常的練習(xí)與學(xué)習(xí)評價時,一般只要求學(xué)生判斷100以內(nèi)的3的倍數(shù)。
學(xué)情分析:
學(xué)生經(jīng)歷了課程改革四年的時間,已經(jīng)養(yǎng)成了動腦思考的習(xí)慣,能根據(jù)材料選擇相關(guān)的信息進行討論、交流與研究,積極進行小組合作,更為重要的是能把信息進行重新組合,從而選擇有用的信息進行問題的研究。當(dāng)一個挑戰(zhàn)性的問題來臨時,學(xué)生的表現(xiàn)一般是群情激昂,對數(shù)學(xué)問題有著濃厚的研究興趣,可以說,學(xué)生有了一定的自學(xué)與研究能力。
備課思路:
1、借助學(xué)生的學(xué)習(xí)經(jīng)驗與基礎(chǔ),提出數(shù)學(xué)問題,引導(dǎo)學(xué)生猜測。
2、利用100以內(nèi)的數(shù)表,在猜測的基礎(chǔ)上,研究并觀察3的倍數(shù)的特征。
3、通過直觀學(xué)具的操作,進一步認識3的倍數(shù)的特征。
4、引導(dǎo)學(xué)生驗證發(fā)現(xiàn)的規(guī)律。
5、在練習(xí)的基礎(chǔ)上,運用3的倍數(shù)的特征去研究9的倍數(shù)的特征。
活動過程:
活動一:提出數(shù)學(xué)問題。
(一)按要求組數(shù)。
1、用3,4,5三個數(shù)字按要求組成三位數(shù)。
(1)組成2的倍數(shù)。
(2)組成5的倍數(shù)。
2、學(xué)生用語言描述2,5的倍數(shù)的特征。
一點想法:
這個過程,比教材的要求要稍微高一點,教材上的要求一般是在100以內(nèi)的數(shù)種研究2,5,3的倍數(shù),這里面有一個考慮,拓展到三位數(shù)中來復(fù)習(xí)舊的知識,使復(fù)習(xí)起到橋梁的作用,進一步理解2,5的倍數(shù)的特征。
(二)提出問題。
1、能不能組成是3的倍數(shù)的三位數(shù)。
2、3的倍數(shù)有什么特征?
活動二:探索數(shù)學(xué)問題。
(一)對學(xué)生猜想問題的處理。
1、進行猜想。
(1)學(xué)生面對問題進行猜想。
(2)教師根據(jù)學(xué)生的猜想進行適當(dāng)?shù)囊龑?dǎo)。
學(xué)生可能出現(xiàn)的情況:
(1)猜測個位上是3,6,9的數(shù)是3的倍數(shù)。
(2)個位上能被3整除的數(shù)能被3整除。
2、探索猜想。
(1)學(xué)生用3,4,5三個數(shù)字組成是3的倍數(shù)的三位數(shù)。
(2)學(xué)生舉例子:比如453,543。
(3)學(xué)生如果出現(xiàn)345或354等例子,教師可以寫在黑板上,不用多加評論,作為后續(xù)的學(xué)習(xí)內(nèi)容。
(4)在這個過程中,學(xué)生可能會得出猜想結(jié)論的成立,即:個位上是3,6,9的數(shù)是3的倍數(shù)。
3、驗證猜想。
(1)讓學(xué)生舉例子對猜想的結(jié)論進行驗證。
(2)在這個過程中,學(xué)生可能會發(fā)現(xiàn)下面兩種情況。
①15是3的倍數(shù),但是個位上的數(shù)字是5,不是3,6,9。
②16個位上的數(shù)字是6,但是不是3的倍數(shù)。
(3)猜想的結(jié)論不成立。
(4)讓學(xué)生對猜想的結(jié)論不成立這個問題,提出自己的想法。
在討論和交流中明白對于一個結(jié)論是否成立,只舉一個正例是不夠的,但是只要舉出一個反例就可以推翻一個結(jié)論。
(二)在質(zhì)疑中引導(dǎo)學(xué)生探究3的倍數(shù)的特征。
1、問題沖突:那么多的數(shù),我們怎么找呢?我們要聰明的找,從比較小的數(shù)開始找。
2、請在下表中找出3的倍數(shù),并做上記號。
(教師出示100以內(nèi)數(shù)表,學(xué)生人手一張,在學(xué)生活動后,組織學(xué)生進行交流,并呈現(xiàn)學(xué)生已圈出3的倍數(shù)的100以內(nèi)數(shù)表,如下圖)
3、觀察3的倍數(shù),你發(fā)現(xiàn)了什么?與同桌交流一下。
(1)在這個過程中,教師要作為一個傾聽著,聽學(xué)生有什么發(fā)現(xiàn),有什么困惑。
(2)學(xué)生發(fā)現(xiàn)個位上的數(shù)字沒有什么規(guī)律,十位上的數(shù)字也沒有什么規(guī)律。
4、教師引領(lǐng)。
(1)斜著觀察,你發(fā)現(xiàn)了什么?
(2)在學(xué)生觀察思考的基礎(chǔ)上,根據(jù)學(xué)生的實際情況提供新的思考點:將每個數(shù)的各個數(shù)字加起來試試看。
5、得出結(jié)論。
一個數(shù)各個數(shù)位上數(shù)字之和是3的倍數(shù),這個數(shù)就一定是3的倍數(shù)。
6、驗證結(jié)論。
(1)利用100以內(nèi)數(shù)表來驗證。
(2)延伸到三位數(shù)或更大的數(shù)。
①回到我們課始的問題,用學(xué)生寫出的345或354等例子進行驗證,
②寫一個更大的數(shù)試試看。
(3)完成課本第7頁的試一試和練一練第1題和第2題。在學(xué)生獨立完成的基礎(chǔ)上,進行討論和交流。注意對學(xué)習(xí)困難學(xué)生的指導(dǎo)和幫助。
活動三:拓展與延伸
(一)回顧與反思
(1)教師和學(xué)生一起回顧整節(jié)課的思考過程,一種學(xué)習(xí)方法的指導(dǎo)。
(2)回顧學(xué)習(xí)的知識有哪些,再次進行整理與歸納。
(二)完成實踐活動
1、猜想并驗證9的倍數(shù)的特征。
(1)學(xué)生閱讀教材,按照教材上幾個問題分層次展開研究。
(2)個人獨立思考,小組研究的基礎(chǔ)上進行全班的交流。
特別說明:這個學(xué)習(xí)過程可能在課內(nèi)完成不了,可以延伸到課外,讓學(xué)生積極主動地進行探索與研究,一定讓學(xué)生經(jīng)歷涂、畫等過程,使學(xué)生獲得真實的體驗。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇5
教學(xué)目標:
1、使學(xué)生初步理解倍數(shù)和因數(shù)的含義,知道倍數(shù)和因數(shù)相互依存的關(guān)系。
2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。
3、使學(xué)生在認識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
教學(xué)重點:
理解因數(shù)和倍數(shù)的含義,知道它們的關(guān)系是相互依存的。
教學(xué)難點:
探索并掌握找一個數(shù)的因數(shù)的方法。
教學(xué)準備:
12個小正方形片、每個學(xué)生的學(xué)號紙。
教學(xué)過程設(shè)計:
一、認識倍數(shù)、因數(shù)的含義
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4×3=1212×1=126×2=12
2、通過剛才的學(xué)習(xí),我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數(shù),12也是3的倍數(shù);反過來,4和3都是12的因數(shù)。
3、今天我們就來研究倍數(shù)和因數(shù)的知識。
(揭示課題:倍數(shù)和因數(shù))
(1)那其它兩道算式,你能說出誰是誰的倍數(shù)嗎?你能說出誰是誰的因數(shù)嗎?
指名回答后,教師追問:如果說12是倍數(shù),2是因數(shù),是否可以?為什么?
小結(jié):倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,他們是相互依存的。
(2)出示:20×3=60,36÷4=9。同桌相互說一說誰是誰的倍數(shù)?誰是誰的因數(shù)?
指出:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)都是指不是0的自然數(shù)。
二、探索找一個數(shù)倍數(shù)的方法。
1、從4×3=12中,知道12是3的倍數(shù)。3的倍數(shù)還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
2、提問:什么樣的數(shù)是3的倍數(shù)?你能按從小到大的順序有條理的說出3的倍數(shù)嗎?能全部說完嗎?可以怎么表示?
3、議一議:你發(fā)現(xiàn)找3的倍數(shù)有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數(shù)。
4、試一試:你能用學(xué)會的竅門很快地寫出2和5的倍數(shù)嗎?
生獨立完成,集體交流。注意用……表示結(jié)果。
5、觀察上面的3個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
根據(jù)學(xué)生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它本身,沒有最大的倍數(shù),一個數(shù)倍數(shù)的個數(shù)是無限的。
6、做“想想做做”第2題。
學(xué)生填表后討論:表中的應(yīng)付元數(shù)是怎么算的?有什么共同特點?你還能說出4的哪些倍數(shù)?說的完嗎?
二、探索求一個數(shù)因數(shù)的方法。
1、學(xué)會了找一個數(shù)倍數(shù)的方法,再來研究求一個數(shù)的因數(shù)。
你能找出36的所有因數(shù)嗎?
2、小組合作,把36的所有因數(shù)一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的找法。
3、出示一份作業(yè):對照自己找出的36的因數(shù),你想對他說點什么?
4、交流整理找36因數(shù)的方法,明確:哪兩個數(shù)相乘的積等于36,那么這兩個數(shù)就是36的因數(shù)。(一對一對地找,又要按次序排列)
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數(shù)。
指名寫在黑板上。
6、觀察發(fā)現(xiàn)一個數(shù)的因數(shù)的特點。
一個數(shù)的因數(shù)最小是1,最大是它本身,一個數(shù)因數(shù)的個數(shù)是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數(shù)和每排人數(shù)與24有怎樣的關(guān)系。
四、課堂總結(jié):學(xué)到這兒,你有哪些收獲?
五、游戲:“看誰反應(yīng)快”。
規(guī)則:學(xué)號符合下面要求的請站起來,并舉起學(xué)號紙。
(1、)學(xué)號是5的倍數(shù)的。
(2、)誰的學(xué)號是24的因數(shù)。
(3、)學(xué)號是30的因數(shù)。
(4、)誰的學(xué)號是1的倍數(shù)。
思考:
1、倍數(shù)和因數(shù)是一個比較抽象的知識,教學(xué)中讓學(xué)生擺出圖形,通過乘法算式來認識倍數(shù)和因數(shù)。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學(xué)生已有知識出發(fā),學(xué)習(xí)倍數(shù)和因數(shù),初步體會其意義
2、在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初
步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設(shè)計了一個練習(xí)。即“根據(jù)下面的算式,同桌互相說說誰是誰的倍數(shù),誰是誰的因數(shù)”第一個是20×3=60,根據(jù)學(xué)生回答后質(zhì)疑“能不能說3是因數(shù),60是倍數(shù)”,從而強調(diào)倍數(shù)和因數(shù)是相互依存的。第二個是36÷4=9,讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),并追問:你是怎么想的?使學(xué)生知道把它轉(zhuǎn)化為乘法算式去說。
在學(xué)生有了倍數(shù)、因數(shù)的初步感受后,再向?qū)W生說明:我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù),明確了因數(shù)和倍數(shù)的研究范圍。
3、p71例一:找3的倍數(shù),先讓學(xué)生獨立思考,“你還能再寫出幾個3的倍數(shù)?你是怎樣想的?”在學(xué)生交流的基礎(chǔ)上,適時提出:什么樣的數(shù)就是3的倍數(shù)?你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?使學(xué)生明確:找3的倍數(shù)時,可以按從到大的順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數(shù)。在此基礎(chǔ)上,引導(dǎo)學(xué)生進一步思考:你能把3的倍數(shù)全都說完嗎?從而使學(xué)生學(xué)會規(guī)范地表示一個數(shù)的所有倍數(shù),并初步體會到一個數(shù)的個數(shù)是無限的。隨后,讓學(xué)生試著找出2和5的倍數(shù),并正確表達2和5的所有倍數(shù)。最后引導(dǎo)學(xué)生觀察寫出的3、2和5的所有倍數(shù),發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,即:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。
4、例二:找36的所有因數(shù),準備讓學(xué)生獨立嘗試,但這部分內(nèi)容對學(xué)生來說是個難點,所以我采用了四人小組合作的方式讓學(xué)生試著找出36的所有因數(shù)。在找36的因數(shù)時,無論想乘法算式還是想除法算式,學(xué)生一般都從無序到有序,從有重復(fù)或遺漏到不重復(fù)不遺漏。所以,我在教學(xué)時允許他們經(jīng)歷這樣的過程。先按自己的思路、用自己的方法寫36的因數(shù),能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數(shù)從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結(jié)合例題和試一試,通過比較和歸納,使學(xué)生明確:一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中最小的是1,最大的是它本身。
5、教材p72第2題讓學(xué)生解決實際問題在表里填數(shù),把4依次乘1、2、3、……得出“應(yīng)付元數(shù)”,然后思考下面的問題,可以使學(xué)生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數(shù),進一步理解找倍數(shù)的方法。第3題也是解決實際問題填寫表里的數(shù),并提出問題讓學(xué)生思考,使學(xué)生明確兩個相乘的數(shù)都是它們積的因數(shù),求一個數(shù)的所有因數(shù),可以想乘法一對一對地找出來,理解找一個數(shù)的因數(shù)的方法。
為了提高學(xué)生學(xué)習(xí)興趣,鞏固所學(xué)的知識。最后安排了一個游戲,讓學(xué)生在游戲中進一步練習(xí)找一個數(shù)倍數(shù)或因數(shù)的方法。。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇6
教學(xué)內(nèi)容:
教材例1、例2
教學(xué)目標
1.知識與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會用列舉法找一個數(shù)的因數(shù)和倍數(shù)。
2.過程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來理解因數(shù)與倍數(shù)的概念。
3.情感、態(tài)度與價值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。
教學(xué)重點:
理解因數(shù)和倍數(shù)的概念。
教學(xué)難點:
掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)方法:
啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準備:
多媒體。
教學(xué)過程:
一、新課導(dǎo)入:
1.出示教材第5頁例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)
(2)分類:你能把上面的除法算式分類嗎?
學(xué)生分類后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類
第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節(jié)課我們就來學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識。(板書課題:因數(shù)和倍數(shù))
二、探索新知:
(一)、明確因數(shù)與倍數(shù)的意義。(教學(xué)例1)
1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們
就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說12是2和6的倍數(shù),2和6是12的因數(shù)。
2. 學(xué)生嘗試。
教師讓學(xué)生說一說第一類的每個算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。
3. 深化認識。師:通過剛才的說一說活動,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生體會:因數(shù)和倍數(shù)雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數(shù),誰是倍數(shù),而應(yīng)該說誰是誰的因數(shù),誰是誰的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括o)。
4. 即時練習(xí)。指導(dǎo)學(xué)生完成教材第5頁“做一做”。
小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的。
(二)、探索找一個數(shù)因數(shù)的方法。(教學(xué)例2)
1. 出示例2:18的因數(shù)有哪幾個?
(1) 學(xué)生獨立思考。
師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。
18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每兩個因數(shù)之間用逗號隔開,全部寫完后用句號結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時教師要讓學(xué)生說明找的方法,引導(dǎo)學(xué)生認識:只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開始,一對一對地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時,先畫一個橢圓,在橢圓的上面寫上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫在橢圓里,每兩個因數(shù)之間也用逗號隔開,全部寫完后不加句號。
(4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。
30的因數(shù)有1,2,3,5,6,10,15,30。
36的因數(shù)有1,2,3,4,6,9,12,18,36。
三、鞏固練習(xí)
指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進行集體證正。
四、課堂小結(jié)
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
板書設(shè)計:
因數(shù)和倍數(shù)
12÷2=6 12是2和6的倍數(shù)
2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。
一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
作業(yè):教材第7頁“練習(xí)二”第2(1)題。
第二單元:因數(shù)和倍數(shù)
第二課時:因數(shù)與倍數(shù)(2)
教學(xué)內(nèi)容:教材p6例3及練習(xí)二第2(1)、3~8題。
教學(xué)目標:
知識與技能:通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個數(shù)的倍數(shù)的方法。 過程與方法:結(jié)合具體情境,使學(xué)生進一步認識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
情感、態(tài)度與價值觀:初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。
教學(xué)重點:掌握求一個數(shù)的倍數(shù)的方法。
教學(xué)難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準備:多媒體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個數(shù)的?一個數(shù)的因數(shù)中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數(shù)的方法。(教學(xué)例3)
出示例3:2的倍數(shù)有哪些?
師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學(xué)也是用乘法做的?
師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?
師:為什么?(因為2的倍數(shù)有無數(shù)個)
師:怎么辦?(用省略號)
師:通過交流,你有什么發(fā)現(xiàn)?
引導(dǎo)學(xué)生初步體會2的倍數(shù)的個數(shù)是無限的。
追問:你能用集合圖表示2的倍數(shù)嗎?
學(xué)生填完后,教師組織學(xué)生進行核對。
(4)即時練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時可能會產(chǎn)生錯誤,教師要引導(dǎo)學(xué)生根據(jù)錯例進行適時剖析。
4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認識以下三點:
(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
(3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
三、鞏固提升
1.指導(dǎo)學(xué)生完成教材第7~8頁“練習(xí)二”第4、5、6、7題。
學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進行集體證正。
集體訂正時,教師著重引導(dǎo)學(xué)生認識以下幾點:
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2.利用求倍數(shù)的方法解決生活中的實際問題
出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。這些西瓜最少有多少個?
理解題意,分析解答。
教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5
倍數(shù)與因數(shù)教學(xué)設(shè)計篇7
師:在寫12的因數(shù)時,我們可以一對一對的寫,(課件出示: 1、12、2、6、3、4. )也可以從兩頭開始寫(板書:1、2、3、4、6、12.)找全了畫一個句號。
3、過渡:12的因數(shù)我們已經(jīng)會找了,那么你能用學(xué)到的知識找到18的因數(shù)嗎?試一試,看誰能挑戰(zhàn)成功!
學(xué)生嘗試,獨立在本上完成。
教師巡視,找出幾個問題學(xué)生和完全寫對的學(xué)生的作業(yè),在視頻臺上展示。
學(xué)生說如何找全的方法,強化“有序”“一對一對的找”。
板書:18的因數(shù)有:1,2,3,6,9,18。
集合圖的形式表示。(課件出示)
4、及時反饋:寫自己學(xué)號的因數(shù)。
學(xué)生在學(xué)號紙上獨立完成,指名板演2的因數(shù),24的因數(shù),25的因數(shù),1的因數(shù)。
做完的同學(xué),互相檢查糾錯。
師:誰剛才幫別人找到錯誤了?(評價:你已經(jīng)熟練的掌握了找因數(shù)的方法,真棒!還有誰是最棒的?祝賀你們)
師:現(xiàn)在我們來看這些數(shù)的因數(shù),個數(shù)有多有少,最少的是誰?(“1”)最大最小都是它自己?!?”的最小因數(shù)是幾?最大因數(shù)是幾?誰還能像老師這樣說一說?
學(xué)生說出“24”和“25”的最小因數(shù)和最大因數(shù)各是多少。
通過找這些數(shù)的因數(shù),從中你發(fā)現(xiàn)了什么?學(xué)生回答:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
其他同學(xué)根據(jù)發(fā)現(xiàn)的規(guī)律自己檢驗,并用彩筆圈起來。
小結(jié):雖然一個數(shù),它因數(shù)的個數(shù)有多有少,但最小的因數(shù)是1,最大因數(shù)是它本身。1的因數(shù)只有1。因為一個數(shù)的因數(shù)有最大和最小,所以個數(shù)是有限的。(板書在表格里)。
四、找一個數(shù)的倍數(shù)。
1、過渡:我們已經(jīng)學(xué)會了找一個數(shù)的因數(shù),那么怎樣找一個數(shù)的倍數(shù)呢?你能像找一個數(shù)的因數(shù)那樣有序的找嗎?相信這個問題也一定難不倒大家,咱們先來試一個簡單的,找2的倍數(shù),看你能找多少個。
2、學(xué)生獨立找,找好后在小組中交流。
3、匯報展示,交流方法。
引導(dǎo):你能按從小到大的順序找2的倍數(shù)嗎?能寫得完嗎?怎么辦?
明確方法:用2分別乘1、2、3、4……得到的積都是2的倍數(shù)。
4、表示方法:2的倍數(shù)有2,4,6,8,10,…(一般寫完前5個,就可以用省略號表示);集合圖。
5、寫出自己學(xué)號的倍數(shù)。
學(xué)生獨立完成,指名兩生板演(3的倍數(shù),5的倍數(shù),1的倍數(shù)),糾正錯誤。
小組合作:在找一個數(shù)的倍數(shù)時,你有什么發(fā)現(xiàn)?
交流匯報:一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),個數(shù)是無限的。
倍數(shù)與因數(shù)教學(xué)設(shè)計篇8
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
師:人與人之間存在著許多種關(guān)系,你們和你們的媽媽之間是什么關(guān)系……?
生、母子、母女關(guān)系。
師:我和你們的關(guān)系是……?
生:師生關(guān)系。
師:對,我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))
二、認識因數(shù)與倍數(shù)
師:現(xiàn)在我們來研究自然數(shù)中數(shù)與數(shù)之間的關(guān)系。請你們用12個小正方形擺成不同的長方形,并根據(jù)擺成的不同情況寫出乘法算式。
根據(jù)學(xué)生的匯報板書:
1×12=12 2×6=12 3×4=12
12÷1=12 12÷2=6 12÷3=4
師:在這3組乘算式中,都有什么共同點?
生:第①組每個式子都有1、12這兩個數(shù)。
生:第②組每個式子都有2、6、12這三個數(shù)。
生:第③組每個式子都有3、4、12這三個數(shù)。
師:(指著第②組)像這樣的乘式子中的三個數(shù)之間的關(guān)系還有一種說法,你們想知道嗎?請看大屏幕
師:2和6與12的關(guān)系還可以怎樣說呢?
生:2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。
師:也就是說,2和12、6的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組算式中,誰和誰還有因數(shù)和倍數(shù)的關(guān)系?
生:3、4和12有因數(shù)和倍數(shù)關(guān)系,3和4是12的因數(shù),12是3和4的倍數(shù)。
生:我認為1和12也有因數(shù)和倍數(shù)關(guān)系。1是12的因數(shù),12是1的倍數(shù)。
師:可以說12是12的因數(shù)嗎?
生:我認為可以,12×1=12,1和12都是12的因數(shù)。
師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數(shù)。
師出示:12÷2=5……2。問:12是2的倍數(shù)嗎?為什么?
生:我認為不是,因為12除以2有余數(shù)。
師:你能舉一個算式,并說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?
生:2×4=8,2和4是8的因數(shù),8是2和4的倍數(shù)。
生:40÷2=20,40是2和20的倍數(shù),2和20是40的因數(shù)。
師出示:0×3 0×10
0÷3 0÷10
通過剛才的計算,你有什么發(fā)現(xiàn)?
生:我發(fā)現(xiàn)0和任何數(shù)相乘,都等于0。
生:0除以任何一個數(shù)都等于0。
生:我補充,0不能作為除數(shù)。
師:所以在研究因數(shù)和倍數(shù)時,我們所說的數(shù)一般指整數(shù),不包括0。
生:我有一個疑問,在2×6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系,這兩種說法一樣嗎?
師:這個問題提得好!誰能回答他的問題?
生:我覺得好像不一樣,但不知道為什么?
生:我認為不一樣,在2×6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系。
師:說的真好。這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說的因數(shù)不是以前乘法算式中各部分名稱中的“因數(shù)”,兩者可不能混哦!
三、師生交流、合作探究:
1。出示例1:18的因數(shù)有哪幾個?
從12的因數(shù)可以看得出,一個數(shù)的因數(shù)不止一個,那么我們一起找找看18的因數(shù)有哪些?
學(xué)生嘗試完成并交流匯報,說說你是怎么找的?(18的因數(shù)有:1,2,3,6,9,18)
我們在寫的時候怎樣寫才能做到不遺漏、不重復(fù)?。
(生:用乘法一對一對找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)
5。小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?(從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。)
四、“動腦筋出教室”游戲課件
五、課堂練習(xí)
1、請你來做小法官
(1)4×9=36,所以36是倍數(shù),9是因數(shù)( )
(2)48是6的倍數(shù)。 ( )
(3)在13÷4=31中,13是4的倍數(shù)。 ( )
(4)6是36的因數(shù)。 ( )
(5)在4x0。5=2中,4和0。5是2的因數(shù)。 ( )
2、細心填一填
(1)、1的因數(shù)是( )
(2)、一個數(shù)的最大因數(shù)是24這個數(shù)是()它的最小的因數(shù)是()。
(3)、自然數(shù)32有()個因數(shù),它們是( )。
(4)、16的因數(shù)有( )
(5)、19的因數(shù)只有( )和( )。
3、我最聰明,我來回答
(1)、27的因數(shù)有哪些?
(2)、27是哪些數(shù)的倍數(shù)?
六、課時小結(jié):
本節(jié)課大家學(xué)習(xí)到什么知識,還有什么不明白的地方嗎?有什么疑問請?zhí)岢鰜砦覀児餐瑏斫鉀Q。
七、板書設(shè)計
因數(shù)和倍數(shù)
1×12=12 12÷1=12
2×6=12 12÷2=6
3×4=12 12÷3=4
因為:a×b=c,(a,b,c都是不為0的整數(shù))
所以:a,b都是c的因數(shù),c是a,b的倍數(shù)
教學(xué)內(nèi)容:
?義務(wù)教育課程標準實驗教科書數(shù)學(xué)(五年級下冊)》第12~13頁。
教學(xué)目標:
1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義觀點。
3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
教學(xué)重點:
理解因數(shù)和倍數(shù)的含義。
教學(xué)難點:
能準確、全面的求一個數(shù)的因數(shù)。
教學(xué)反思:
教學(xué)《因數(shù)和倍數(shù)》,這是一個非??菰锏恼n題,但我巧妙地運用生活中人與人之間的關(guān)系,自然引入到數(shù)與數(shù)之間關(guān)系。為了讓學(xué)生理解因數(shù)和倍數(shù)的含意,教學(xué)過程中,我立足體現(xiàn)一個“實”字,充分應(yīng)用多媒體的優(yōu)點,學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。學(xué)生在學(xué)習(xí)中實實在在經(jīng)歷了一個探究的過程?!皠幽X筋出教室”這一游戲的設(shè)計,學(xué)生在積極參與探討、質(zhì)疑、創(chuàng)造的教學(xué)活動,既鞏固了知識,又享受了數(shù)學(xué)思維的快樂。
在授課時,我體驗到了學(xué)生的快樂。當(dāng)學(xué)生用自己的學(xué)號說整除、因數(shù)、倍數(shù)之間的關(guān)系時,由于像順口溜,很有趣。每個學(xué)生都在愉快中學(xué)會了這節(jié)課的知識。