函數(shù)的教案5篇

時(shí)間:2022-11-29 作者:lcbkmm 備課教案

作為教師在寫教案時(shí)一定要注意邏輯思路是清晰的,為了保證接下來的教學(xué)工作順利進(jìn)行,我們需要制定一份完整的教案,以下是范文社小編精心為您推薦的函數(shù)的教案5篇,供大家參考。

函數(shù)的教案5篇

函數(shù)的教案篇1

教材分析:

“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上展開研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

學(xué)情分析:

通過初中階段的學(xué)習(xí)和高中對(duì)函數(shù)、指數(shù)的運(yùn)算等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對(duì)函數(shù)已經(jīng)有了一定的認(rèn)識(shí),學(xué)生對(duì)用“描點(diǎn)法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對(duì)由特殊到一般再到特殊的數(shù)學(xué)活動(dòng)過程已有一定的體會(huì).

教學(xué)目標(biāo):

知識(shí)與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大小.

過程與方法:

(1) 體會(huì)從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學(xué)生觀察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;

(2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).

情感、態(tài)度與價(jià)值觀:

(1)體驗(yàn)從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題,激發(fā)學(xué)生自主探究的精神,在探究過程中體驗(yàn)合作學(xué)習(xí)的樂趣;

(2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進(jìn)一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣。

教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)

教學(xué)難點(diǎn):指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用

教法研究:

本節(jié)課準(zhǔn)備由實(shí)際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實(shí)際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).

利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個(gè)非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的.性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時(shí)運(yùn)用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問題,幫助學(xué)生理解新只是。

教學(xué)過程:

一、問題情境 :

問題1:某種細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),以此類推,一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞個(gè)數(shù)y與x的函數(shù)關(guān)系式是什么?

問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?

分析可知,函數(shù)的關(guān)系式分別是 與

問題3:在問題1和2中,兩個(gè)函數(shù)的自變量都是正整數(shù),但在實(shí)際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的剩余量外,還想知道3個(gè)月、一年半后該物質(zhì)的剩余量,怎么辦?

這就需要對(duì)函數(shù)的定義域進(jìn)行擴(kuò)充,結(jié)合指數(shù)概念的的擴(kuò)充,我們也可以將函數(shù)的定義域擴(kuò)充至全體實(shí)數(shù),這樣就得到了一個(gè)新的函數(shù)——指數(shù)函數(shù).

二、數(shù)學(xué)建構(gòu) :

1]定義:

一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .

問題4:為什么規(guī)定 ?

問題5:你能舉出指數(shù)函數(shù)的例子嗎?

閱讀材料(“放射性碳法”測(cè)定古物的年代):

在動(dòng)植物體內(nèi)均含有微量的放射性 ,動(dòng)植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會(huì)自動(dòng)衰變.經(jīng)過5740年( 的半衰期),它的殘余量為原來的一半.經(jīng)過科學(xué)測(cè)定,若 的原始含量為1,則經(jīng)過x年后的殘留量為 = .

這種方法經(jīng)常用來推算古物的年代.

練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).

(1) (2)

(3) (4)

說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.

有些函數(shù)貌似指數(shù)函數(shù),實(shí)際上卻不是,如y= +k (a>0且a 1,k z);

有些函數(shù)看起來不像指數(shù)函數(shù),實(shí)際上卻是,如y= (a>0,且a 1),因?yàn)樗梢曰癁閥= ,其中 >0,且 1

2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡(jiǎn)單應(yīng)用:利用幾何畫板及其他多媒體軟件和學(xué)生一起完成

問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?

函數(shù)的定義域,值域,單調(diào)性,奇偶性等;

利用函數(shù)圖象研究函數(shù)的性質(zhì)

問題7:作函數(shù)圖象的一般步驟是什么?

列表,描點(diǎn),作圖

探究活動(dòng)1:用列表描點(diǎn)法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個(gè)函數(shù)的圖像,我們可以得到這兩個(gè)函數(shù)哪些共同的性質(zhì)?請(qǐng)同學(xué)們仔細(xì)觀察.

引導(dǎo)學(xué)生分析圖象并總結(jié)此時(shí)指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):

(1)定義域?r

(2)值域?函數(shù)的值域?yàn)?/p>

(3)過哪個(gè)定點(diǎn)?恒過 點(diǎn),即

(4)單調(diào)性? 時(shí), 為 上的增函數(shù)

(5)何時(shí)函數(shù)值大于1?小于1? 當(dāng) 時(shí), ;當(dāng) 時(shí),

問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?

(引導(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力).

根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時(shí)指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.

問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?

(學(xué)生完成表格的設(shè)計(jì),教師適當(dāng)引導(dǎo))

函數(shù)的教案篇2

教學(xué)目標(biāo):

知識(shí)與技能

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。

過程與方法

1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價(jià)值觀

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

教學(xué)重點(diǎn):

1、掌握函數(shù)概念。

2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問題抽象概括為函數(shù)問題。

教學(xué)難點(diǎn):

1、理解函數(shù)的概念。

2、能把實(shí)際問題抽象概括為函數(shù)問題。

教學(xué)過程設(shè)計(jì):

一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

?師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?

函數(shù)的教案篇3

一、目標(biāo)知識(shí)與技能:了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系 ; 能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間。

過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;

情感、態(tài)度與價(jià)值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

二、重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過4次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間

教學(xué)難點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過4次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間

三、教學(xué)過程:

函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對(duì)數(shù)量的變化規(guī)律有一個(gè)基本的了解.我們以導(dǎo)數(shù)為工具,對(duì)研究函數(shù)的增減及極值和最值帶來很大方便.

四、學(xué)情分析

我們的學(xué)生屬于平行分班,沒有實(shí)驗(yàn)班,學(xué)生已有的知識(shí)和實(shí)驗(yàn)水平有差距。需要教師指導(dǎo)并借助動(dòng)畫給予直觀的認(rèn)識(shí)。

五、教學(xué)方法

發(fā)現(xiàn)式、啟發(fā)式

新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點(diǎn)撥→反思總結(jié)、當(dāng)堂檢測(cè)→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)

六、課前準(zhǔn)備

1.學(xué)生的學(xué)習(xí)準(zhǔn)備:

2.教師的教學(xué)準(zhǔn)備:多媒體課件制作,課前預(yù)習(xí)學(xué)案,課內(nèi)探究學(xué)案,課后延伸拓展學(xué)案。

七、課時(shí)安排:

1課時(shí)

八、教學(xué)過程

(一)預(yù)習(xí)檢查、總結(jié)疑惑

檢查落實(shí)了學(xué)生的預(yù)習(xí)情況并了解了學(xué)生的疑惑,使教學(xué)具有了針對(duì)性。

提問

1.判斷函數(shù)的單調(diào)性有哪些方法?

(引導(dǎo)學(xué)生回答“定義法”,“圖象法”。)

2.比如,要判斷 y=x2 的單調(diào)性,如

何進(jìn)行?(引導(dǎo)學(xué)生回顧分別用定義法、圖象法完成。)

3.還有沒有其它方法?如果遇到函數(shù):

y=x3-3x判斷單調(diào)性呢?(讓學(xué)生短時(shí)

間內(nèi)嘗試完成,結(jié)果發(fā)現(xiàn):用“定義法”,

作差后判斷差的符號(hào)麻煩;用“圖象法”,圖象很難畫出來。)

4.有沒有捷徑?(學(xué)生疑惑,由此引出課題)這就要用到咱們今天要學(xué)的導(dǎo)數(shù)法。

以問題形式復(fù)習(xí)相關(guān)的舊知識(shí),同時(shí)引出新問題:三次函數(shù)判斷單調(diào)性,定義法、圖象法很不方便,有沒有捷徑?通過創(chuàng)設(shè)問題情境,使學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),積極主動(dòng)地參與到學(xué)習(xí)中來。

(二)情景導(dǎo)入、展示目標(biāo)。

設(shè)計(jì)意圖:步步導(dǎo)入,吸引學(xué)生的注意力,明確學(xué)習(xí)目標(biāo)。

(探索函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系) 問:函數(shù)的單調(diào)性和導(dǎo)數(shù)有何關(guān)系呢?

教師仍以y=x2為例,借助幾何畫板動(dòng)態(tài)演示,讓學(xué)生記錄結(jié)果在課前發(fā)的表格第二行中:

函數(shù)及圖象 單調(diào)性 切線斜率k的正負(fù) 導(dǎo)數(shù)的正負(fù)

問:有何發(fā)現(xiàn)?(學(xué)生回答)

問:這個(gè)結(jié)果是否具有一般性呢?

(三)合作探究、精講點(diǎn)撥。

我們來考察兩個(gè)一般性的例子:

(教師指導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn):把準(zhǔn)備的牙簽放在表中曲線y=f(x)的圖象上,作為曲線的切線,移動(dòng)切線并記錄結(jié)果在上表第三、四行中。)

問:能否得出什么規(guī)律?

讓學(xué)生歸納總結(jié),教師簡(jiǎn)單板書:

在某個(gè)區(qū)間(a,b)內(nèi),

若f ' (x)>0,則f(x)在(a,b)上是增函數(shù);

若f ' (x)

教師說明:

要正確理解“某個(gè)區(qū)間”的含義,它必需是定義域內(nèi)的某個(gè)區(qū)間。

1.這一部分是后面利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的理論依據(jù),重要性不言而喻,而學(xué)生又只學(xué)習(xí)了導(dǎo)數(shù)的意義和一些基本運(yùn)算,要想得到嚴(yán)格的證明是不現(xiàn)實(shí)的,因此,只要求學(xué)生能借助幾何直觀得出結(jié)論,這與新課標(biāo)中的要求是相吻合的。

2.教師對(duì)具體例子進(jìn)行動(dòng)態(tài)演示,學(xué)生對(duì)一般情況進(jìn)行實(shí)驗(yàn)驗(yàn)證。由觀察、猜想到歸納、總結(jié),讓學(xué)生體驗(yàn)知識(shí)的發(fā)現(xiàn)、發(fā)生過程,變灌注知識(shí)為學(xué)生主動(dòng)獲取知識(shí),從而使之成為課堂教學(xué)活動(dòng)的主體。

3.得出結(jié)論后,教師強(qiáng)調(diào)正確理解“某個(gè)區(qū)間”的含義,它必需是定義域內(nèi)的某個(gè)區(qū)間。這一點(diǎn)將在例1的變式3具體體現(xiàn)。

4.考慮到本節(jié)課堂容量較大,這里沒有提到函數(shù)在個(gè)別點(diǎn)處導(dǎo)數(shù)為零不影響單調(diào)性的情況(如y=x3在x=0處),這一問題將在后續(xù)課程中給學(xué)生補(bǔ)充。

應(yīng)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間

例1.求函數(shù)y=x2-3x的單調(diào)區(qū)間。

(引導(dǎo)學(xué)生得出解題思路:求導(dǎo) →

令f ' (x)>0,得函數(shù)單調(diào)遞增區(qū)間,令f ' (x)

變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。

(競(jìng)賽活動(dòng):將全班同學(xué)分成兩大組指定分別用單調(diào)性的定義,和用求導(dǎo)數(shù)的方法解答,每組各推薦一位同學(xué)的答案進(jìn)行投影。)

求單調(diào)區(qū)間是導(dǎo)數(shù)的一個(gè)重要應(yīng)用,也是本節(jié)重點(diǎn),為此,設(shè)計(jì)了例1及三個(gè)變式:

設(shè)計(jì)例1可引導(dǎo)學(xué)生得出用導(dǎo)數(shù)法求單調(diào)區(qū)間的解題步驟

設(shè)計(jì)變式1及競(jìng)賽活動(dòng)可以激發(fā)學(xué)生的`學(xué)習(xí)熱情,讓他們學(xué)會(huì)比較,并深刻體驗(yàn)導(dǎo)數(shù)法的優(yōu)越性。

鞏固提高

變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。

(學(xué)生上黑板解答)

變式3:求函數(shù) 的單調(diào)區(qū)間。

設(shè)計(jì)變式2且讓學(xué)生上黑板解答可以規(guī)范解題格式,同時(shí)使學(xué)生了解用導(dǎo)數(shù)法可以求更復(fù)雜的函數(shù)的單調(diào)區(qū)間。

設(shè)計(jì)變式3是可使學(xué)生體會(huì)考慮定義域的必要性

例1及三個(gè)變式,依次涉及二次,三次函數(shù),含指數(shù)的函數(shù)、反比例函數(shù),這樣一題多變,逐步深化,從而讓學(xué)生領(lǐng)會(huì):如何應(yīng)用及哪類單調(diào)性問題該應(yīng)用“導(dǎo)數(shù)法”解決。

多媒體展示探究思考題。

在學(xué)生分組實(shí)驗(yàn)的過程中教師巡回觀察指導(dǎo)。 (課堂實(shí)錄) ,

(四)反思總結(jié),當(dāng)堂檢測(cè)。

教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進(jìn)行當(dāng)堂檢測(cè)。

設(shè)計(jì)意圖:引導(dǎo)學(xué)生構(gòu)建知識(shí)網(wǎng)絡(luò)并對(duì)所學(xué)內(nèi)容進(jìn)行簡(jiǎn)單的反饋糾正。(課堂實(shí)錄)

(五)發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)。

設(shè)計(jì)意圖:布置下節(jié)課的預(yù)習(xí)作業(yè),并對(duì)本節(jié)課鞏固提高。教師課后及時(shí)批閱本節(jié)的延伸拓展訓(xùn)練。

九、板書設(shè)計(jì)

例1.求函數(shù)y=3x2-3x的單調(diào)區(qū)間。

變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。

變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。

變式3:求函數(shù) 的單調(diào)區(qū)間。

十、教學(xué)反思

本課的設(shè)計(jì)采用了課前下發(fā)預(yù)習(xí)學(xué)案,學(xué)生預(yù)習(xí)本節(jié)內(nèi)容,找出自己迷惑的地方。課堂上師生主要解決重點(diǎn)、難點(diǎn)、疑點(diǎn)、考點(diǎn)、探究點(diǎn)以及學(xué)生學(xué)習(xí)過程中易忘、易混點(diǎn)等,最后進(jìn)行當(dāng)堂檢測(cè),課后進(jìn)行延伸拓展,以達(dá)到提高課堂效率的目的。

函數(shù)的教案篇4

一、教學(xué)目標(biāo):

1、知識(shí)與技能:

(1) 結(jié)合實(shí)例,了解正整數(shù)指數(shù)函數(shù)的概念.

(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進(jìn)一步研究其性質(zhì).

2、 過程與方法:

(1)讓學(xué)生借助實(shí)例,了解正整數(shù)指數(shù)函數(shù),體會(huì)從具體到一般,從個(gè)別到整體的研究過程和研究方法.

(2)從圖像上觀察體會(huì)正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學(xué)習(xí)作好鋪墊.

3、情感.態(tài)度與價(jià)值觀:使學(xué)生通過學(xué)習(xí)正整數(shù)指數(shù)函數(shù)體會(huì)學(xué)習(xí)指數(shù)函數(shù)的重要意義,增強(qiáng)學(xué)習(xí)研究函數(shù)的積極性和自信心.

二、教學(xué)重點(diǎn):正整數(shù)指數(shù)函數(shù)的定義.教學(xué)難點(diǎn):正整數(shù)指數(shù)函數(shù)的解析式的確定.

三、學(xué)法指導(dǎo):學(xué)生觀察、思考、探究.教學(xué)方法:探究交流,講練結(jié)合。

四、教學(xué)過程

(一)新課導(dǎo)入

[互動(dòng)過程1]:

(1)請(qǐng)你用列表表示1個(gè)細(xì)胞分裂次數(shù)分別

為1,2,3,4,5,6,7,8時(shí),得到的細(xì)胞個(gè)數(shù);

(2)請(qǐng)你用圖像表示1個(gè)細(xì)胞分裂的次數(shù)n( )與得到的細(xì)

胞個(gè)數(shù)y之間的關(guān)系;

(3)請(qǐng)你寫出得到的細(xì)胞個(gè)數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用

科學(xué)計(jì)算器計(jì)算細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù).

解:

(1)利用正整數(shù)指數(shù)冪的運(yùn)算法則,可以算出1個(gè)細(xì)胞分裂1,2,3,

4,5,6,7,8次后,得到的細(xì)胞個(gè)數(shù)

分裂次數(shù) 1 2 3 4 5 6 7 8

細(xì)胞個(gè)數(shù) 2 4 8 16 32 64 128 256

(2)1個(gè)細(xì)胞分裂的次數(shù) 與得到的細(xì)胞個(gè)數(shù) 之間的關(guān)系可以用圖像表示,它的圖像是由一些孤立的點(diǎn)組成

(3)細(xì)胞個(gè)數(shù) 與分裂次數(shù) 之間的關(guān)系式為 ,用科學(xué)計(jì)算器算得 ,

所以細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù)分別為32768和1048576.

探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別是什么?此函數(shù)是什么類型的函數(shù)? 細(xì)胞個(gè)數(shù) 隨著分裂次數(shù) 發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的細(xì)胞分裂個(gè)數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 細(xì)胞個(gè)數(shù) 與分裂次數(shù) 之間的關(guān)系式為 .細(xì)胞個(gè)數(shù) 隨著分裂次數(shù) 的增多而逐漸增多.

[互動(dòng)過程2]:?jiǎn)栴}2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975 t,其中q0是臭氧的初始量,t是時(shí)間(年),這里設(shè)q0=1.

(1)計(jì)算經(jīng)過20,40,60,80,100年,臭氧含量q;

(2)用圖像表示每隔20年臭氧含量q的變化;

(3)試分析隨著時(shí)間的增加,臭氧含量q是增加還是減少.

解:(1)使用科學(xué)計(jì)算器可算得,經(jīng)過20,40,60,80,100年,臭氧含量q的值分別為0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

(2)用圖像表示每隔20年臭氧含量q的變化如圖??

示,它的圖像是由一些孤立的點(diǎn)組成.

(3)通過計(jì)算和觀察圖形可以知道, 隨著時(shí)間的增加,臭氧含量q在逐漸減少.

探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量q隨著時(shí)間的增加發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 臭氧含量q近似滿足關(guān)系式q=0.9975 t, 隨著時(shí)間的增加,臭氧含量q在逐漸減少.

[互動(dòng)過程3]:上面兩個(gè)問題所得的函數(shù)有沒有共同點(diǎn)?你能統(tǒng)一嗎?自變量的取值范圍又是什么?這樣的函數(shù)圖像又是什么樣的?為什么?

正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù) 叫作正整數(shù)指數(shù)函數(shù),其中 是自變量,定義域是正整數(shù)集 .

說明: 1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長(zhǎng)問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).

(二)、例題:某地現(xiàn)有森林面積為1000 ,每年增長(zhǎng)5%,經(jīng)過 年,森林面積為 .寫出 , 間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.

分析:要得到 , 間的函數(shù)關(guān)系式,可以先一年一年的增長(zhǎng)變化,找出規(guī)律,再寫出 , 間的函數(shù)關(guān)系式.

解: 根據(jù)題意,經(jīng)過一年, 森林面積為1000(1+5%) ;經(jīng)過兩年, 森林面積為1000(1+5%)2 ;經(jīng)過三年, 森林面積為1000(1+5%)3 ;所以 與 之間的函數(shù)關(guān)系式為 ,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).

練習(xí):課本練習(xí)1,2

補(bǔ)充例題:高一某學(xué)生家長(zhǎng)去年年底到銀行存入2000元,銀行月利率為2.38%,那么如果他第n個(gè)月后從銀行全部取回,他應(yīng)取回錢數(shù)為y,請(qǐng)寫出n與y之間的關(guān)系,一年后他全部取回,他能取回多少?

解:一個(gè)月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%),二個(gè)月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)2;,三個(gè)月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)3,, n個(gè)月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)n; 所以n與y之間的關(guān)系為y=2000(1+2.38%)n (nn+),一年后他全部取回,他能取回的錢數(shù)為y=2000(1+2.38%)12.

補(bǔ)充練習(xí):某工廠年產(chǎn)值逐年按8%的速度遞增,今年的年產(chǎn)值為200萬(wàn)元,那么第n年后該廠的年產(chǎn)值為多少?

(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長(zhǎng)問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù)。

函數(shù)的教案篇5

一、教學(xué)目的

1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

2.使學(xué)生理解求自變量的取值范圍的兩個(gè)依據(jù)。

3.使學(xué)生掌握關(guān)于解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會(huì)求其函數(shù)值。

4.通過求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):函數(shù)自變量取值的求法。

難點(diǎn):函靈敏處變量取值的確定。

三、教學(xué)過程

復(fù)習(xí)提問

1.函數(shù)的定義是什么?函數(shù)概念包含哪三個(gè)方面的內(nèi)容?

2.什么叫分式?當(dāng)x取什么數(shù)時(shí),分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

4.舉出一個(gè)函數(shù)的實(shí)例,并指出式中的變量與常量、自變量與函數(shù)。

新課

1.結(jié)合同學(xué)舉出的實(shí)例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

2.結(jié)合同學(xué)舉出的實(shí)例,說明函數(shù)的自變量取值范圍有時(shí)要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個(gè)依據(jù)是:

(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。

(2)自變量取值范圍要使實(shí)際問題有意義。

3.講解p93中例2。并指出例2四個(gè)小題代表三類題型:(1),(2)題給出的是只含有一個(gè)自變量的整式;(3)題給出的是只含有一個(gè)自變量的分式;(4)題給出的是只含有一個(gè)自變量的二次根式。

推廣與聯(lián)想:請(qǐng)同學(xué)按上述三類題型自編3個(gè)題,并寫出解答,同桌互對(duì)答案,老師評(píng)講。

4.講解p93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):

(1)例3中的4個(gè)小題歸納起來仍是三類題型。

(2)求函數(shù)值的問題實(shí)際是求代數(shù)式值的問題。

補(bǔ)充例題

求下列函數(shù)當(dāng)x=3時(shí)的函數(shù)值:

(1)y=6x—4;(2)y=——5x2;(3)y=3/7x—1;(4)

(答:(1)y=14;(2)y=—45;(3)y=3/20;(4)y=0。)

小結(jié)

1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

2.求函數(shù)自變量取值范圍的兩個(gè)方法(依據(jù)):

(1)要使函數(shù)的解析式有意義。

①函數(shù)的解析式是整式時(shí),自變量可取全體實(shí)數(shù);

②函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母≠0;

③函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)≥0。

(2)對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使實(shí)際問題有意義。

3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

練習(xí):p94中1,2,3。

作業(yè):p95~p96中a組3,4,5,6,7。b組1,2。

四、教學(xué)注意問題

1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個(gè)小題,對(duì)每一個(gè)例題均可歸納為三類題型。而對(duì)于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

3.注意培養(yǎng)學(xué)生對(duì)于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對(duì)于有實(shí)際意義來確定,由于實(shí)際問題千差萬(wàn)別,所以我們就要具體分析,靈活處置。