教案要結合實際的教學進度和學生的學習能力,才能更好地幫助學生提高學習效果,教案的質(zhì)量直接關系到教學效果的好壞,范文社小編今天就為您帶來了對數(shù)函數(shù)的教案6篇,相信一定會對你有所幫助。
對數(shù)函數(shù)的教案篇1
教學目標:
(一)教學知識點:1.對數(shù)函數(shù)的概念;2.對數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓練要求:1.理解對數(shù)函數(shù)的概念;2.掌握對數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標:1.用聯(lián)系的觀點分析問題;2.認識事物之間的互相轉(zhuǎn)化.
教學重點:
對數(shù)函數(shù)的圖象和性質(zhì)
教學難點:
對數(shù)函數(shù)與指數(shù)函數(shù)的關系
教學方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學輔助:
多媒體
教學過程:
一、引入對數(shù)函數(shù)的概念
由學生的預習,可以直接回答“對數(shù)函數(shù)的概念”
由指數(shù)、對數(shù)的定義及指數(shù)函數(shù)的概念,我們進行類比,可否猜想有:
問題:1.指數(shù)函數(shù)是否存在反函數(shù)?
2.求指數(shù)函數(shù)的反函數(shù).
①;
②;
③指出反函數(shù)的定義域.
3.結論
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).
二、講授新課
1.對數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對數(shù)函數(shù)的圖象和性質(zhì):
因為對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關于直線對稱.
因此,我們只要畫出和圖象關于直線對稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時,我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關于直線對稱的曲線得到的圖象.
還可以畫出與圖象關于直線對稱的曲線得到的圖象.
請同學們作出與的草圖,并觀察它們具有一些什么特征?
對數(shù)函數(shù)的.圖象與性質(zhì):
圖象
性質(zhì)(1)定義域:
(2)值域:
(3)過定點,即當時,
(4)上的增函數(shù)
(4)上的減函數(shù)
3.圖象的加深理解:
下面我們來研究這樣幾個函數(shù):,,,.
我們發(fā)現(xiàn):
與圖象關于x軸對稱;與圖象關于x軸對稱.
一般地,與圖象關于x軸對稱.
再通過圖象的變化(變化的值),我們發(fā)現(xiàn):
(1)時,函數(shù)為增函數(shù),
(2)時,函數(shù)為減函數(shù),
4.練習:
(1)如圖:曲線分別為函數(shù),,,,的圖像,試問的大小關系如何?
(2)比較下列各組數(shù)中兩個值的大?。?/p>
(3)解關于x的不等式:
思考:(1)比較大小:
(2)解關于x的不等式:
三、小結
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).并且研究了對數(shù)函數(shù)的圖象和性質(zhì).
四、課后作業(yè)
課本p85,習題2.8,1、3
對數(shù)函數(shù)的教案篇2
一、內(nèi)容與解析
(一)內(nèi)容:對數(shù)函數(shù)的性質(zhì)
(二)解析:本節(jié)課要學的內(nèi)容是對數(shù)函數(shù)的性質(zhì)及簡單應用,其核心(或關鍵)是對數(shù)函數(shù)的性質(zhì),理解它關鍵就是要利用對數(shù)函數(shù)的圖象.學生已經(jīng)掌握了對數(shù)函數(shù)的圖象特點,本節(jié)課的內(nèi)容就是在此基礎上的發(fā)展.由于它是構造復雜函數(shù)的基本元素之一,所以對數(shù)函數(shù)的性質(zhì)是本單元的重要內(nèi)容之一.的重點是掌握對數(shù)函數(shù)的性質(zhì),解決重點的關鍵是利用對數(shù)函數(shù)的圖象,通過數(shù)形結合的思想進行歸納總結。
二、目標及解析
(一)教學目標:
1.掌握對數(shù)函數(shù)的性質(zhì)并能簡單應用
(二)解析:
(1)就是指根據(jù)對數(shù)函數(shù)的兩類圖象總結并理解對數(shù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、函數(shù)值的分布特征等性質(zhì),并能將這些性質(zhì)應用到簡單的問題中。
三、問題診斷分析
在本節(jié)課的教學中,學生可能遇到的問題是底數(shù)a對對數(shù)函數(shù)圖象和性質(zhì)的影響,產(chǎn)生這一問題的原因是學生對參量認識不到位,往往將參量等同于自變量.要解決這一問題,就是要將參量的取值多元化,最好應用幾何畫板的快捷性處理這類問題,其中關鍵是應用好幾何畫板.
四、教學支持條件分析
在本節(jié)課()的教學中,準備使用(),因為使用(),有利于().
五、教學過程
問題1.先畫出下列函數(shù)的簡圖,再根據(jù)圖象歸納總結對數(shù)函數(shù) 的相關性質(zhì)。
設計意圖:
師生活動(小問題):
1.這些對數(shù)函數(shù)的解析式有什么共同特征?
2.通過這些函數(shù)的圖象請從值域、單調(diào)性、奇偶性方面進行總結函數(shù)的性質(zhì)。
3.通過這些函數(shù)圖象請從函數(shù)值的分布角度總結相關性質(zhì)
4.通過這些函數(shù)圖象請總結:當自變量取一個值時,函數(shù)值隨底數(shù)有什么樣的變化規(guī)律?
問題2.先畫出下列函數(shù)的簡圖,根據(jù)圖象歸納總結對數(shù)函數(shù) 的相關性質(zhì)。
問題3.根據(jù)問題1、2填寫下表
圖象特征函數(shù)性質(zhì)
a>10<a<1a>10<a<1
向y軸正負方向無限延伸函數(shù)的值域為r+
圖象關于原點和y軸不對稱非奇非偶函數(shù)
函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域為r
函數(shù)圖象都過定點(1,0)
自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數(shù)減函數(shù)
在第一象限內(nèi)的圖象縱坐標都大于0,橫坐標大于1在第一象限內(nèi)的圖象縱坐標都大于0,橫標大于0小于1
在第四象限內(nèi)的圖象縱坐標都小于0,橫標大于0小于1在第四象限內(nèi)的圖象縱坐標都小于0,橫標大于1
[設計意圖]發(fā)現(xiàn)性質(zhì)、弄清性質(zhì)的來龍去脈,是為了更好揭示對數(shù)函數(shù)的本質(zhì)屬性,傳統(tǒng)教學往往讓學生在解題中領悟。為了扭轉(zhuǎn)這種方式,我先引導學生回顧指數(shù)函數(shù)的性質(zhì),再利用類比的思想,小組合作的形式通過圖象主動探索出對數(shù)函數(shù)的性質(zhì)。教學實踐表明:當學生對對數(shù)函數(shù)的圖象已有感性認識后,得到這些性質(zhì)必然水到渠成
例1.比較下列各組數(shù)中兩個值的大?。?/p>
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
變式訓練:1. 比較下列各題中兩個值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比較正數(shù)m,n 的大?。?/p>
(1) log 3 m log 0.3 n
(3) log a m 1)
例2.(1)若 且 ,求 的取值范圍
(2)已知 ,求 的取值范圍;
六、目標檢測
1.比較 , , 的大?。?/p>
2.求下列各式中的x的值
(1)
演繹推理導學案
2.1.2 演繹推理
學習目標
1.結合已學過的.數(shù)學實例和生活中的實例,體會演繹推理的重要性;
2.掌握演繹推理的基本方法,并能運用它們進行一些簡單的推理.
學習過程
一、前準備
復習1:歸納推理是由 到 的推理.
類比推理是由 到 的推理.
復習2:合情推理的結論 .
二、新導學
※ 學習探究
探究任務一:演繹推理的概念
問題:觀察下列例子有什么特點?
(1)所有的金屬都能夠?qū)щ姡~是金屬,所以 ;
(2)一切奇數(shù)都不能被2整除,20xx是奇數(shù),所以 ;
(3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),所以 ;
(4)兩條直線平行,同旁內(nèi)角互補.如果a與b是兩條平行直線的同旁內(nèi)角,那么 .
新知:演繹推理是
的推理.簡言之,演繹推理是由 到 的推理.
探究任務二:觀察上述例子,它們都由幾部分組成,各部分有什么特點?
所有的金屬都導電 銅是金屬 銅能導電
已知的一般原理 特殊情況 根據(jù)原理,對特殊情況做出的判斷
大前提 小前提 結論
新知:“三段論”是演繹推理的一般模式:
大前提—— ;
小前提—— ;
結論—— .
新知:用集合知識說明“三段論”:
大前提:
小前提:
結 論:
試試:請把探究任務一中的演繹推理(2)至(4)寫成“三段論”的形式.
※ 典型例題
例1 命題:等腰三角形的兩底角相等
已知:
求證:
證明:
把上面推理寫成三段論形式:
變式:已知空間四邊形abcd中,點e,f分別是ab,ad的中點, 求證:ef 平面bcd
例2求證:當a>1時,有
動手試試:1證明函數(shù) 的值恒為正數(shù)。
2 下面的推理形式正確嗎?推理的結論正確嗎?為什么?
所有邊長相等的凸多邊形是正多邊形,(大前提)
菱形是所有邊長都相等的凸多邊形, (小前提)
菱形是正多邊形. (結 論)
小結:在演繹推理中,只要前提和推理形式是正確的,結論必定正確.
三、總結提升
※ 學習小結
1. 合情推理 ;結論不一定正確.
2. 演繹推理:由一般到特殊.前提和推理形式正確結論一定正確.
3應用“三段論”解決問題時,首先應該明確什么是大前提和小前提,但為了敘述簡潔,如果大前提是顯然的,則可以省略.
※ 當堂檢測(時量:5分鐘 滿分:10分)計分:
1. 因為指數(shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則 是增函數(shù).這個結論是錯誤的,這是因為
a.大前提錯誤 b.小前提錯誤 c.推理形式錯誤 d.非以上錯誤
2. 有這樣一段演繹推理是這樣的“有些有理數(shù)是真分數(shù),整數(shù)是有理數(shù),則整數(shù)是真分數(shù)”
結論顯然是錯誤的,是因為
a.大前提錯誤 b.小前提錯誤 c.推理形式錯誤 d.非以上錯誤
3. 有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線 平面 ,直線 平面 ,直線 ∥平面 ,則直線 ∥直線 ”的結論顯然是錯誤的,這是因為
a.大前提錯誤 b.小前提錯誤 c.推理形式錯誤 d.非以上錯誤
4.歸納推理是由 到 的推理;
類比推理是由 到 的推理;
演繹推理是由 到 的推理.
后作業(yè)
1. 運用完全歸納推理證明:函數(shù) 的值恒為正數(shù)。
直觀圖
總 課 題空間幾何體總課時第4課時
分 課 題直觀圖畫法分課時第4課時
目標掌握斜二側(cè)畫法的畫圖規(guī)則.會用斜二側(cè)畫法畫出立體圖形的直觀圖.
重點難點用斜二側(cè)畫法畫圖.
引入新課
1.平行投影、中心投影、斜投影、正投影的有關概念.
2.空間圖形的直觀圖的畫法——斜二側(cè)畫法:
規(guī)則:(1)____________________________________________________________.
(2)____________________________________________________________.
(3)____________________________________________________________.
(4)____________________________________________________________.
例題剖析
例1 畫水平放置的正三角形的直觀圖.
例2 畫棱長為 的正方體的直觀圖.
鞏固練習
1.在下列圖形中,采用中心投影(透視)畫法的是__________.
2.用斜二測畫法畫出下列水平放置的圖形的直觀圖.
3.根據(jù)下面的三視圖,畫出相應的空間圖形的直觀圖.
課堂小結
通過例題弄清空間圖形的直觀圖的斜二側(cè)畫法方法及步驟.
對數(shù)函數(shù)的教案篇3
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎上能進行初步的應用。
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象。
(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。
高一數(shù)學對數(shù)函數(shù)教案:教材分析
(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。
(2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點。
(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的'兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點。
高一數(shù)學對數(shù)函數(shù)教案:教法建議
(1) 對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2) 在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
對數(shù)函數(shù)的教案篇4
教學目標
1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎上,使學生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應用性質(zhì)解決簡單問題.
2. 通過對數(shù)函數(shù)的學習,樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點,滲透數(shù)形結合,分類討論的思想.
3. 通過對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)學生觀察,分析,歸納的思維能力,調(diào)動學生學習的積極性.
教學重點,難點
重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
教學方法
啟發(fā)研討式
教學用具
投影儀
教學過程
一. 引入新課
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質(zhì)是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學生說出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個學生口答求反函數(shù)的過程:
由 得 .又 的值域為 ,
所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
二.對數(shù)函數(shù)的圖像與性質(zhì) (板書)
1. 作圖方法
提問學生打算用什么方法來畫函數(shù)圖像?學生應能想到利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時,要求學生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).
(2) 畫出直線 .
(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出和 的圖像.(此時同底的'指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:
2. 草圖.
教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標系內(nèi),如圖:
然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)
3. 性質(zhì)
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于 軸的右側(cè).
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于 軸對稱.
(5) 單調(diào)性:與 有關.當 時,在 上是增函數(shù).即圖像是上升的
當 時,在 上是減函數(shù),即圖像是下降的.
之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:
當 時,有 ;當 時,有 .
學生回答后教師可指導學生巧記這個結論的方法:當?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負,并把它當作第(6)條性質(zhì)板書記下來.
最后教師在總結時,強調(diào)記住性質(zhì)的關鍵在于要腦中有圖.且應將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應用.
三.鞏固練習
練習:若 ,求 的取值范圍.
四.小結
五.作業(yè) 略
對數(shù)函數(shù)的教案篇5
一、說教材
1、地位和作用
本章學習是在學生完成函數(shù)的第一階段學習(初中)的基礎上,進行第二階段的函數(shù)學習。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學生已經(jīng)學習了指數(shù)函數(shù)及對數(shù)的內(nèi)容,這為過渡到本節(jié)的學習起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,是在沒學習反函數(shù)的基礎上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量與因變量之間的關系,同時對數(shù)函數(shù)作為常用數(shù)學模型在解決社會生活中的實例有廣泛的應用,本節(jié)課的學習為學生進一步學習、參加生產(chǎn)和實際生活提供必要的基礎知識。
2、教學目標的確定及依據(jù)
依據(jù)新課標和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
(1) 理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。
(2) 培養(yǎng)學生自主學習、綜合歸納、數(shù)形結合的能力。
(3) 培養(yǎng)學生用類比方法探索研究數(shù)學問題的素養(yǎng);
(4) 培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神。
(5) 在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯(lián)系舊知識,學習新知識。
難點:底數(shù)a對對數(shù)函數(shù)的圖象和性質(zhì)的影響;
關鍵:對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學
由指數(shù)函數(shù)的圖象過渡到對數(shù)函數(shù)的圖象,通過類比分析達到深刻地了解對數(shù)函數(shù)的圖象及其性質(zhì)是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖象,數(shù)形結合,加強直觀教學,使學生能形成以圖象為根本,以性質(zhì)為主體的知識網(wǎng)絡,同時在例題的講解中,重視加強題組的設計和變形,使教學真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突出重點、突破難點。
二、說教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
(1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。
(2)采用"從特殊到一般"、"從具體到抽象"的方法。
(3)體現(xiàn)"對比聯(lián)系"、"數(shù)形結合"及"分類討論"的思想方法。
(4)投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數(shù)函數(shù)性質(zhì)對照,歸納、整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學知識更牢固,理解更深刻。
三、說學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學習法:學生通過分析、探索,得出對數(shù)函數(shù)的定義。
(3)自主性學習法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
四、說教程
在認真分析教材、教法、學法的基礎上,設計教學過程如下:
(一) 創(chuàng)設問題情景、提出問題
在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù) 對數(shù)函數(shù)說課稿 ,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細胞的個數(shù)),這樣就建立了一個細胞個數(shù)和分裂次數(shù)x之間的函數(shù)關系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設計意圖:復習指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細胞個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設計意圖:為了引出對數(shù)函數(shù)
問題三:在關系式 對數(shù)函數(shù)說課稿 每輸入一個細胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設計意圖:一是為了更好地理解函數(shù),同時也是為了讓學生更好地理解對數(shù)函數(shù)的概念。
(二) 意義建構:
1. 對數(shù)函數(shù)的概念:
同樣,在前面提到的放射性物質(zhì),經(jīng)過的時間x年與物質(zhì)剩余量y的關系式為 對數(shù)函數(shù)說課稿 ,我們也可以把它改為對數(shù)式, 對數(shù)函數(shù)說課稿 ,其中x年也可以看作物質(zhì)剩余量y的函數(shù),可見這樣的問題在現(xiàn)實生活中還是不少的。
設計意圖:前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)為0.84,我認為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但在習慣上,我們用x表示自變量,用y表示函數(shù)值
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?(在此體現(xiàn)了由特殊到一般的數(shù)學思想)
問題三:在 對數(shù)函數(shù)說課稿 中,a有什么限制條件嗎?請結合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五:對數(shù)函數(shù)說課稿與對數(shù)函數(shù)說課稿中的x,y的相同之處是什么?不同之處是什么?
問題六:對數(shù)函數(shù)說課稿與 對數(shù)函數(shù)說課稿中的x,y的相同之處是什么?不同之處是什么?
設計意圖:前四個問題是為了引導出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學生最容易忽略的或最不理解的是函數(shù)的定義域,所以設計這兩個問題是為了讓學生更好地理解對數(shù)函數(shù)的定義域
2. 對數(shù)函數(shù)的圖象與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學習什么內(nèi)容了?
(提示學生進行類比學習)
合作探究1;借助于計算器在同一直角坐標系中畫出下列兩組函數(shù)的圖象,并觀察各組函數(shù)的圖象,探求他們之間的關系。
合作探究2:當 對數(shù)函數(shù)說課稿 函數(shù) 對數(shù)函數(shù)說課稿 與 對數(shù)函數(shù)說課稿 的圖象之間有什么關系?(在這兒體現(xiàn)"從特殊到一般"、"從具體到抽象"的方法)
合作探究3:分析你所畫的兩組函數(shù)的圖象,對照指數(shù)函數(shù)的性質(zhì),總結歸納對數(shù)函數(shù)的性質(zhì)。
(學生討論并交流各自的發(fā)現(xiàn)成果,教師結合學生的交流,適時歸納總結,并板書對數(shù)函數(shù)的性質(zhì))
問題1:對數(shù)函數(shù) 對數(shù)函數(shù)說課稿 ( 對數(shù)函數(shù)說課稿 )是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù) 對數(shù)函數(shù)說課稿 ( 對數(shù)函數(shù)說課稿 ),當 對數(shù)函數(shù)說課稿 時,x取何值,y 對數(shù)函數(shù)說課稿 0,x取何值,y 對數(shù)函數(shù)說課稿 ,當 對數(shù)函數(shù)說課稿 呢?
問題3:對數(shù)式 對數(shù)函數(shù)說課稿 的值的符號與a,b的取值之間有何關系?請用一句簡潔的話語敘述。
知識拓展:函數(shù) 對數(shù)函數(shù)說課稿 稱為 對數(shù)函數(shù)說課稿 的反函數(shù),反之,函數(shù) 對數(shù)函數(shù)說課稿 也稱為 對數(shù)函數(shù)說課稿 的反函數(shù)。一般地,如果函數(shù) 對數(shù)函數(shù)說課稿 存在反函數(shù),那么它的反函數(shù)記作為 對數(shù)函數(shù)說課稿
(三) 數(shù)學應用
1. 例題
例1:求下列函數(shù)的定義域
(1) 對數(shù)函數(shù)說課稿
(2) 對數(shù)函數(shù)說課稿 ( 對數(shù)函數(shù)說課稿 )
(該題主要考查對數(shù)函數(shù) 對數(shù)函數(shù)說課稿 的定義域 對數(shù)函數(shù)說課稿 這一限制條件根據(jù)函數(shù)的解析式求得不等式,解對應的不等式。同時通過本題也可讓學生總結求函數(shù)的定義域應從哪些方面入手)
例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1) 對數(shù)函數(shù)說課稿 , 對數(shù)函數(shù)說課稿
(2) 對數(shù)函數(shù)說課稿 , 對數(shù)函數(shù)說課稿
(3) 對數(shù)函數(shù)說課稿 , 對數(shù)函數(shù)說課稿
(4) 對數(shù)函數(shù)說課稿 , 對數(shù)函數(shù)說課稿 ,
(在這兒要求學生通過回顧指數(shù)函數(shù)的有關性質(zhì)比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當點撥完成解答,最后進行歸納總結比較數(shù)的大小常用的方法)
合作探究4:已知 對數(shù)函數(shù)說課稿 ,比較m,n的大?。ㄔ擃}不僅運用了對數(shù)函數(shù)的圖象和性質(zhì),還培養(yǎng)了學生數(shù)形結合、分類討論等數(shù)學思想。)
本題可以從以下幾方面加以引導點撥
1.本題的難點在哪兒?
2.你希望不等式的兩邊的對數(shù)式變成怎樣的形式,你能否找到它們之間的聯(lián)系
本題也可以從形的角度來思考。
(四) 目標檢測
p69 1,2,3
(五) 課堂小結
由學生小結(對數(shù)函數(shù)的概念,對數(shù)函數(shù)的圖象和性質(zhì),利用對數(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟,求定義域應從幾方面考慮等)
(六)布置作業(yè)
p70 1,2,3
對數(shù)函數(shù)的教案篇6
對數(shù)函數(shù)及其性質(zhì)教學設計
1.教學方法
建構主義學習觀,強調(diào)以學生為中心,學生在教師指導下對知識的主動建構。它既強調(diào)學習者的認知主體作用,又不忽視教師的指導作用。
高中一年級的學生正值身心發(fā)展的過渡時期,思維活躍,具有一定的獨立性,喜歡新鮮事物,敢于大膽發(fā)表自己的見解,不過思維還不是很成熟.
在目標分析的基礎上,根據(jù)建構主義學習觀,及學生的認知特點,我擬采用“探究式”教學方法。將一節(jié)課的核心內(nèi)容通過四個活動的形式引導學生對知識進行主動建構。其理論依據(jù)為建構主義學習理論。它很好地體現(xiàn)了“學生為主體,教師為主導,問題為主線,思維為主攻”的“四為主”的教學思想。
2.學法指導
新課程強調(diào)“以學生發(fā)展為核心”,強調(diào)培養(yǎng)學生的自主探索能力與合作學習能力。因此本節(jié)課學生將在教師的啟發(fā)誘導下對教師提供的素材經(jīng)歷創(chuàng)設情境→獲得新知→作圖察質(zhì)→問題探究→歸納性質(zhì)→學以致用→趁熱打鐵→畫龍點睛→自我提升的過程,這一過程將激發(fā)學生積極參與到教學活動中來。
3.教學手段
本節(jié)課我選擇計算機輔助教學。增大課堂容量,提高課堂效率;激發(fā)學生的學習興趣,展示運動變化過程,使信息技術真正為教學服務.
4.教學流程
四、教學過程
教學過程
設計意圖
一、創(chuàng)設情境,導入新課
活動1:(1)同學們有沒有看過《冰河世紀》這個電影?先播放視頻,引入課題。
(2)考古學家經(jīng)過長期實踐,發(fā)現(xiàn)凍土層內(nèi)某微量元素的含量p與年份t的關系:,這是一個指數(shù)式,由指數(shù)與對數(shù)的關系,此指數(shù)式可改寫為對數(shù)式。
(3)考古學家提取了凍土層內(nèi)微量元素,確定它的.殘余量約占原始含量的1%,即p=0.01,代入對數(shù)式,可知
(4)由表格中的數(shù)據(jù):
碳14的含量p
0.5
0.3
0.1
0.01
0.001
生物死亡年數(shù)t
5730
9953
19035
39069
57104
可讀出精確年份為39069,當p值為0.001時,t大約為57104年,所以每一個p值都與一個t值相對應,是一一對應關系,所以p與t之間是函數(shù)關系。
(5)數(shù)學知識不但可以解決猛犸象的封存時間,也可以與其他學科的知識相結合來解決視頻中的遺留問題,就是不知道咱們中國的猛犸象克隆問題會由班里的哪位同學解決,我們拭目以待。
(6)把函數(shù)模型一般化,可給出對數(shù)函數(shù)的概念。
通過這個實例激發(fā)學生學習的興趣,使學生認識到數(shù)學來源于實踐,并為實踐服務。
和學生一起分析處理問題,體會函數(shù)關系,并體現(xiàn)學生的主體地位。
二、形成概念、獲得新知
定義:一般地,我們把函數(shù)
叫做對數(shù)函數(shù)。其中x是自變量,定義域為
例1求下列函數(shù)的定義域:
(1);(2).
解:(1)函數(shù)的定義域是。
(2)函數(shù)的定義域是。
歸納:形如的的函數(shù)的定義域要考慮—
三、探究歸納、總結性質(zhì)
活動1:小組合作,每個組內(nèi)分別利用描點法畫和的圖象,組長合理分工,看哪個小組完成的最好。
選取完成最好、最快的小組,由組長在班內(nèi)展示。
活動2:小組討論,對任意的a值,對數(shù)函數(shù)圖象怎么畫?
教師帶領學生一起舉手,共同畫圖。
活動3:對a>1時,觀察圖象,你能發(fā)現(xiàn)圖象有哪些圖形特征嗎?
然后由學生討論完成下表左邊:
函數(shù)的圖象特征
函數(shù)的性質(zhì)
圖象都位于y軸的右方
定義域是
圖象向上向下無限延展
值域是r
圖象都經(jīng)過點(1,0)
當x=1時,總有y=0
當a>1時,圖象逐漸上升;
當0當a>1時,是增函數(shù)
當0通過對定義的進一步理解,培養(yǎng)學生思維的嚴密性和批判性。
通過作出具體函數(shù)圖象,讓學生體會由特殊到一般的研究方法。
學生可類比指數(shù)函數(shù)的研究過程,獨立研究對數(shù)函數(shù)性質(zhì),從而培養(yǎng)學生探究歸納、分析問題、解決問題的能力。
師生一起完成表格右邊,對0<a<1時,找兩位同學一問一答共同完成,再次體現(xiàn)數(shù)形結合。
四、探究延伸
(1)探討對數(shù)函數(shù)中的符號規(guī)律.
(2)探究底數(shù)分別為與的對數(shù)函數(shù)圖像的關系.
(3)在第一象限中,探究底數(shù)分別為的對數(shù)函數(shù)圖象與底數(shù)a的關系.
五、分析例題、鞏固新知
例2比較下列各組數(shù)中兩個值的大小:
(1),;
(2),;
(3),。
解:
(1)在上是增函數(shù),
且3.4
(2)在上是減函數(shù),
且3.4
(3)注:底數(shù)非常數(shù),要分類討論的范圍.
當a>1時,在上是增函數(shù),
且3.4
當0且3.4
練習1:比較下列兩個數(shù)的大?。?/p>
練習2:比較下列兩個數(shù)的大?。?/p>
(找學生上黑板講解練習2的第一題,強調(diào)多種做法,一起完成第二小題.)
考察學生對對數(shù)函數(shù)圖像的理解與掌握,進一步強調(diào)數(shù)形結合。
通過運用對數(shù)函數(shù)的單調(diào)性“比較兩數(shù)的大小”培養(yǎng)學生運用函數(shù)的觀點解決問題,逐步向?qū)W生滲透函數(shù)的思想,分類討論的思想,提高學生的發(fā)散思維能力。
六、對比總結、深化認識
先總結本節(jié)課所學內(nèi)容,由學生總結,教師補充,強調(diào)哪些是重要內(nèi)容
(1)對數(shù)函數(shù)的定義;
(2)對數(shù)函數(shù)的圖象與性質(zhì);
(3)對數(shù)函數(shù)的三個結論;
(4)對數(shù)函數(shù)的圖象與性質(zhì)的應用.
七、課后作業(yè)、鞏固提高
(1)理解對數(shù)函數(shù)的圖象與性質(zhì);
(2)課本74頁,習題2.2中7,8;
(3)上網(wǎng)搜集一些運用對數(shù)函數(shù)解決的實際問題,根據(jù)今天學習的知識予以解答.
八、評價分析
堅持過程性評價和階段性評價相結合的原則。堅持激勵與批評相結合的原則.
教學過程中,評價學生的情緒、狀態(tài)、積極性、自信心、合作交流的意識與獨立思考的能力;
在學習互動中,評價學生思維發(fā)展的水平;
在解決問題練習和作業(yè)中,評價學生基礎知識基本技能的掌握.
適時地組織和指導學生歸納知識和技能的一般規(guī)律,有助于學生更好地學習、記憶和應用,發(fā)揮知識系統(tǒng)的整體優(yōu)勢,并為后續(xù)學習打好基礎。
課后作業(yè)的設計意圖:
一、鞏固學生本節(jié)課所學的知識并落實教學目標;二、讓不同基礎的學生學到不同的技能,體現(xiàn)因材施教的原則;
三、使同學們體會到科學的探索永無止境,為數(shù)學的學習營造一種良好的科學氛圍。